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Editorial on the Research Topic

Robotics in Extreme Environments

INTRODUCTION

The development and deployment of robotics technology in extreme environments, such as
nuclear decommissioning, offshore maintenance, space exploration and deep mining has
received considerable attention in recent years. In all of these areas, robots are required to
reduce the risks associated with operations staff, typically by removing the requirement for
people to enter the hazardous environments and to increase productivity in high
consequence and cluttered facilities. There has been significant effort in robotics research
in this area, for example to make robotic systems able to survive in the presence of high levels
of radiation and toxic substances, to operate at extreme pressures and temperatures, and to
complete tasks safely in unstructured environments. We have seen there are many cross-
domain challenges that researchers in robotics in extreme environments are working on
(Figure 1).

In the context of robotics in extreme environments we raised the research topic aiming to bring
together the latest cutting-edge research in the field, to deepen the current understanding and to
share research challenges. This e-book comprises a collection of eight articles, published by Frontiers
in Robotics and AI on the topic.

OVERVIEW OF THE CONTENTS OF THE E-BOOK

Let’s Push Things Forward: A Survey on Robot Pushing
Stüber et al. present an overview of the current state of the art in robot pushing. Pushing
objects is a crucial skill that mobile robots require for a wide range of applications, including
tasks in extreme environments. The authors compared more than 50 publications dividing
them into six categories: purely analytical, hybrid, dynamic analysis, physics engine, data
driven and deep learning. A special focus was given to the problem of motion prediction of the
object to be pushed. The authors conclude the paper with final remarks including open
problems.

Edited and reviewed by:
Antonio Manuel Pascoal,

Universidade de Lisboa, Portugal

*Correspondence:
Chie Takahashi

chie.k.takahashi@gmail.com

Specialty section:
This article was submitted to

Robotic Control Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 19 July 2021
Accepted: 27 July 2021

Published: 19 August 2021

Citation:
Takahashi C, Giuliani M, Lennox B,
Hamel WR, Stolkin R and Semini C

(2021) Editorial: Robotics in
Extreme Environments.

Front. Robot. AI 8:744092.
doi: 10.3389/frobt.2021.744092

Frontiers in Robotics and AI | www.frontiersin.org August 2021 | Volume 8 | Article 7440921

EDITORIAL
published: 19 August 2021

doi: 10.3389/frobt.2021.744092

4

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.744092&domain=pdf&date_stamp=2021-08-19
https://www.frontiersin.org/articles/10.3389/frobt.2021.744092/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.744092/full
https://www.frontiersin.org/researchtopic/9888
https://doi.org/10.3389/frobt.2020.00008
http://creativecommons.org/licenses/by/4.0/
mailto:chie.k.takahashi@gmail.com
https://doi.org/10.3389/frobt.2021.744092
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.744092


Radiation Tolerance Testing Methodology
of Robotic Manipulator Prior to Nuclear
Waste Handling
Zhang, et al., present a radiation tolerance testing
methodology for robotic manipulators, covering key aspects
of the process from emulation of the radiation environment
through to hot cell testing set up, data acquisition and
analysis. The group from the Universities of Bristol and
Manchester applied their methodology to a KUKA robotic
arm and showed that it was surprisingly robust to radiation.
These results suggest that the full spectrum of modern
industrial robot products may be viable (with appropriate
modifications) for practical use in future nuclear remote
operations.

A Holistic Approach to Human-Supervised
Humanoid Robot Operations in Extreme
Environments
The paper (Wonsick et al.) written by researchers from
Northeastern University and Irish Manufacturing Research
gives attention to the physical interaction aspects of a
humanoid using glove box ports in terms of the mechanics
of surfaces, footing and extended-arm operations. The
authors present their initial concepts and ideas about
making humanoid operations human-supervised along the
lines that will make sense for glove box operations and
provide pragmatic insights into how humanoid robots will

need to be extended to 1 day be used in extreme
environments.

Radiation Mapping and Laser Profiling
Using a Robotic Manipulator
Characterisation of nuclear materials, particularly in legacy
facilities, is of great importance and in this article (White et al.),
researchers from the University of Bristol, working with KUKA
Systems, developed a robotic system, integrated with a radiation
detector and time of flight sensor to provide measures of the
distance to any object being scanned and the level of gamma
activity at this location. By using the manipulator to raster over
the surface of an object, the proposed technique is able to produce
3-dimensional radiation characterisation maps.

Radiological Mapping of Post-Disaster
Nuclear Environments Using Fixed-Wing
Unmanned Aerial Systems: A Study From
Chernobyl
This article (Connor et al.) describes a study led by researchers
from the University of Bristol into the use of a fixed-wing
unmanned aerial system to map radioactive contamination
across relatively large areas of land. The capabilities of the
proposed system were demonstrated through deployment
within the Chernobyl Exclusion Zone (CEZ), where it
generated radiation dose-rate maps of large areas of land that
were consistent with more expensive, manual surveys.

BVLOS Unoccupied Aerial Systems
Operations in Highly-Turbulent Volcanic
Plumes
Wood et al. provide insights into operating Unoccupied Aerial
Systems (UAS) in highly-turbulent volcanic plumes. They present
a detailed analysis of three missions in which the team flew a fixed
wing UAS beyond visual line of sight into the plumes of Manam
volcano, Papua New Guinea. The paper contains a detailed
description of the used UAS and provides insights into plume
sampling applications, with the authors giving recommendations
for physical parameters and propulsion systems of aircraft used
for taking measurements in turbulent volcanic plumes.

Automatic Fracture Characterization Using
Tactile and Proximity Optical Sensing
Palermo et al. present a custom-designed integrated tactile and
proximity sensor that can be used for automatic detection of
surface cracks. This approach might be more suitable for
operation in extreme environments where, for example,
radiation may damage electronic components of commonly
employed sensing devices. For the detection, the sensor slides
across different surfaces and records data. Using machine

FIGURE 1 | Overview of research topics and challenges for Robotics in
Extreme Environments.
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learning, the team can then classify fractures and other
mechanical features with an average crack detection accuracy
of ∼94% and width classification accuracy of ∼80%.

Simultaneous Material Segmentation and
3D Reconstruction in Industrial Scenarios
Zhao et al. present a novel transfer learning approach for material
segmentation and categorization of RGB images, with a special
focus on nuclear waste. The authors combine transfer learning
with Recurrent Neural Networks to perform boundary-aware
annotation and 3D semantic reconstruction. Additionally, the
authors generated a new dataset that includes RGB image patches
and fully pixel-wise annotated RGB images as a supplement to the
public dataset Materials in Context (MINC).

CONCLUSIONS

The eight articles in this e-book show a wide range of state-of-the-
art technologies and multidisciplinary approaches based on
different use case scenarios. Each article shows the latest
research progress and actively discusses the current
technological problems. Through this article collection we can
share the common issues and future perspectives. we expect this
would contribute to make a breakthrough and promote optimal
integration of systems from different fields of science and
technologies.
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In the immediate aftermath following a large-scale release of radioactive material into the

environment, it is necessary to determine the spatial distribution of radioactivity quickly.

At present, this is conducted by utilizing manned aircraft equipped with large-volume

radiation detection systems. Whilst these are capable of mapping large areas quickly,

they suffer from a low spatial resolution due to the operating altitude of the aircraft.

They are also expensive to deploy and their manned nature means that the operators

are still at risk of exposure to potentially harmful ionizing radiation. Previous studies

have identified the feasibility of utilizing unmanned aerial systems (UASs) in monitoring

radiation in post-disaster environments. However, the majority of these systems suffer

from a limited range or are too heavy to be easily integrated into regulatory restrictions

that exist on the deployment of UASs worldwide. This study presents a new radiation

mapping UAS based on a lightweight (8 kg) fixed-wing unmanned aircraft and tests its

suitability to mapping post-disaster radiation in the Chornobyl Exclusion Zone (CEZ).

The system is capable of continuous flight for more than 1 h and can resolve small scale

changes in dose-rate in high resolution (sub-20 m). It is envisaged that with some minor

development, these systems could be utilized to map large areas of hazardous land

without exposing a single operator to a harmful dose of ionizing radiation.

Keywords: radiation, Chornobyl, UAS (unmanned aircraft system), fixed-wing aerial surveys, post-disaster,

cesium, nuclear, drones (UAV)

1. INTRODUCTION

The large-scale release of radionuclides from the Chornobyl Nuclear Power Plant (ChNPP)
remains the most significant nuclear accident in the history of civil nuclear power generation.
During the 10 days of emissions from Reactor 4, approximately 11,780 PBq of radioactive material
was released into the environment, including 1,700 PBq of 131I and 85 PBq of 137Cs (Gudiksen
et al., 1988; Cort et al., 1998; Smith and Beresford, 2005, p. 12). While the accident had far reaching
environmental implications for a large area of Northern Europe, the area worst affected by the
accident covers approximately 4,730 km2 across modern day Ukraine (2,600 km2) and Belarus
(2,130 km2). The area within Ukraine defines the Chornobyl Exclusion Zone (CEZ), which is an
access controlled region, established in May 1986, designed to mitigate dose exposure to the public.
Restrictions on access are still in place to this day, although tourism permits are currently available
as part of official guided tours.
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In the decades since the accident, there have been
significant advancements in remote/automated characterization
technologies that were not available to the responding forces in
April 1986. Examples of these technologies include radiation-
hard robotics systems, stand-off characterization systems and
nuclear-focused unmanned aerial systems (UAS). In particular,
UAS with radiation mapping capabilities have been shown on a
number of occasions to provide excellent results when it comes
to mapping radiation within post-disaster environments.

There are a number of formats of UASs that have been
used to map radiation within the environment, these include
helicopter-style systems (Towler et al., 2012; Furutani et al., 2013;
Sanada and Torii, 2014), multi-rotor systems (MacFarlane et al.,
2014; Martin et al., 2015, 2016; Burtniak et al., 2018; Connor
et al., 2018a,b) and fixed-wing systems (Kurvinen et al., 2005;
Pöllänen et al., 2009). Operating within the area affected by the
Fukushima nuclear incident in 2011, Sanada and Torii (2014)
demonstrated that UASs are capable of greatly improving the
resolution of airborne radiation maps vs. the traditional method
of using manned aircraft systems (MAS). Using a Yamaha-
RMAX helicopter as a transport platform for a custom radiation
mapping payload, several plumes of radioactivity were revealed
that were not identifiable within the original manned aircraft
survey. This result confirmed that UAS can offer greater detail
within airborne radiometric surveys, albeit at the expense of
absolute spatial coverage due to the increased time it takes to
survey a comparable area.

As well as the heavier systems, like the RMAX presented
in Sanada and Torii (2014) (94 kg), smaller UAS systems have
been effectively demonstrated for a range of radiological mapping
purposes. These include post-disaster environments (Martin
et al., 2016; Burtniak et al., 2018; Connor et al., 2018a,b), indoor
applications (Boudergui et al., 2011) and mapping naturally
occurring radioactive material (NORM) (Martin et al., 2015;
Šálek et al., 2018). A full review of UAS radiation mapping
is provided within Connor et al. (2016). More recently, a
lightweight, multi-rotor UAS was used to map radiation within
the “Red Forest” region of the CEZ in especially high resolution
( 5 m pixel−1). The system used within this study showed
the capabilities of UASs to operate within even some of the
most extreme radiological environments on earth with great
effect. The ability of lightweight UASs to fly significantly lower
than manned aircraft means that they can achieve improved
spatial resolutions and sensitivities despite carrying much lighter
(smaller-volume) payloads.

Terrestrial radiological measurements acquired from the
air require a series of processing steps to convert the
collected information into a true estimate of the activity of
radioactive material present in the surveyed environment. Over
approximately seven decades of operational experience of using
manned aircraft, a defined series of processing steps have been
established to accurately perform the correction of the raw
measurements to a ground activity or dose-rate. This process
is termed the “Spectral Windows” method and involves the
segregation of the recorded gamma spectrum into a number of
discrete energy windows that correspond to particular isotopes.
The method is outlined in detail within Minty (1997) and can be

used to map a range of radionuclides within the environment.
However, these processing algorithms are optimized for large-
volume (16–64 L) detectors that span gamma-ray energy ranges
from 0 to 3 MeV, which are commonly used within manned
aircraft surveys (International Atomic Energy Agency, 1991;
Erdi-Krausz et al., 2003). The sensor packages used on unmanned
aerial systems (UASs) are limited in terms of their volume (and
hence detection efficiency) due to weight limits imposed by both
physical and regulatory controls. This, in turn, limits certain key
detection parameters that do not easily permit the use of all
the steps within the standard processing algorithm encouraged
by the IAEA. As increasing the payload capacity of UASs or
reducing regulatory control is not often realistic or possible,
alternative processing methods are required to overcome these
hardware issues.

The major step within the workflow that small-volume
systems struggle to overcome is in defining spectral stripping
coefficients for removing scattered photons from erroneously
appearing within lower energy spectral windows. This process
occurs when an incident photon deposits only a portion of
its energy to the detector medium before escaping the active
volume without depositing further energy (Minty, 1997; Knoll,
2010). The occurrence is more pronounced in small-volume
detectors due to the reduced interaction volume and causes
the energy of the incident photon to be underestimated. The
presence of high-energy emitters within the survey environment
can therefore cause the intensity of lower-energy emitters
to be overestimated. By using data acquired from well-
characterized, infinite-yield sources (typically doped concrete
pads) the magnitude of scattered photons falling within lower-
energy windows can be determined through the definition
of a series of simultaneous equations. These allow for the
contribution to any energy window from one that exists at a
higher energy to be removed, leaving only the true intensity
behind. To correct for this, a signal within higher energy
windows is required. This can be a problem for small-volume
systems, as with limited detection volumes comes limited energy
ranges. The contributions from abundant naturally occurring
radioactive radionuclides (principally 238U/235U, 232Th, and 40K)
need to be determined regardless of the primary target of the
mapping procedure either for direct observation or for correction
purposes. However, the characteristic spectral windows span
energies in excess of 1.3 Mev (Table 1), which would require
relatively large counting times or very intense sources to be
able to accurately detect using small-volume detectors under
aerial survey conditions. Therefore an alternative method for
conducting this correction is required.

A further issue with utilizing small UASs into radiation
mapping procedures is the limited battery life of the systems
(Connor et al., 2016). This means that the absolute range of the
aircraft is relatively low and therefore the potential area that can
be covered in a single survey is small. This is highlighted in the
research outlined above, as the investigations are limited to either
relatively small sites, or present large data collection periods for
more extensive areas. Increasing the range of radiation mapping
UASs is therefore a necessary advancement for utilizing these
platforms to monitor radiation over larger areas. At present,
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TABLE 1 | Recommended spectral windows for radioelement mapping using

manned aircraft.

Window Nuclide Energy range (MeV)

Total count _ 0.400–2.810

Cesium 137Cs (0.662 MeV) 0.618–0.705

Potassium 40K (1.460 MeV) 1.370–1.570

Uranium 214Bi (1.765 MeV) 1.660–1.860

Thorium 208Tl (2.614 MeV) 2.410–2.810

Modified from International Atomic Energy Agency (1991) and Erdi-Krausz et al. (2003).

manned-aircraft are the most utilized method of radiologically
mapping large areas of land. However, there are a number of
problems with using this method over utilizing UASs. Firstly,
manned aircraft cannot operate at very low altitudes in the
same way that UASs can due to regulatory restrictions. This
dramatically reduces the spatial of the radiometric data collected
by the platform (Connor et al., 2016). Furthermore, manned
aicraft surveys are inherently more expensive to conduct than
UAS surveys and still require the exposure of the pilot/crew
to potentially harmful ionizing radiation. One of the methods
to overcome the limitations presented by both multi-rotor
UASs and manned aircraft is to utilize fixed-wing vehicles as
the transport platform. Whilst designs and implementations
of radiation mapping systems using these aircraft have been
presented within the literature (Kurvinen et al., 2005; Pöllänen
et al., 2009), they have never been deployed to map terrestrial
radiation in non-controlled environments.

A potential reason for the lack of real-world implementations
is that, from an operational perspective, using a fixed-wingUAS is
more complicated than using an equivalent system incorporating
a multi-rotor vehicle. This arises from the physical differences
in the way each platform achieves flight and maneuvers in the
air. Multi-rotor systems fundamentally act like helicopters with
the ability to statically hover, maneuver along complex flight
paths and take-off/land in confined spaces. Advances in autopilot
technology effectively isolates the pilot from the vehicle behavior
with commands in the form of simplified orthogonal motions.
Conversely, fixed-wing systems require constant motion to stay
aloft and typically require much larger open areas for take-
off/landing. The pilot also needs to be more skilled and guide the
aircraft using combined roll and pitch motions.

One of the advantages of the fixed-wing is its increased range
and speed relative to multi-rotor systems. Take-off and landing
zones do not need to be close to the proposed survey area due to
the higher flight speeds resulting in short transit times. Assuming
the survey area was well known to the operators (or sufficiently
well-characterized by pre-flight and ground surveying methods),
it would be entirely possible to operate a few kilometers away
from a survey area. Being able to operate from a distance
is a key parameter in responding to nuclear incidents, as it
allows operators to be completely or partially removed from a
potential hazard. At present, current safety regulations regarding
flying beyond visual line of sight (BVLOS) make this type
of operation difficult to implement routinely. However, it is

possible to obtain exemptions for such flights. It is envisaged
that the response to a nuclear incident would constitute a
valid exemption to this restriction under a well planned safety
case. The work presented within this study presents a new
design for a lightweight fixed-wing radiation mapping UAS to
monitor terrestrial radiation within post-disaster environments
using a modified data processing procedure based on the
“Spectral Windows” method. The study aims to demonstrate the
advantages of deploying these systems to map relatively large
areas of contaminated land in a short time frame within the
CEZ (Figure 1) and discusses their suitability to the task vs. the
traditional methods of mapping radiation in the environment. It
is hypothesized that the utilization of these systems can bridge
the gap in spatial resolution, aerial coverage and operating costs
that exist between previous UAS surveys and surveys conducted
using manned aircraft.

2. INSTRUMENTS AND METHODS

2.1. Fixed-Wing Mapping System
The UAS used within this investigation comprises a fixed-wing
vehicle, an integrated radiation mapping payload, and associated
ground support equipment. The vehicle was custom built at
the University of Bristol based around the “Titan” airframe
(Skywalker, Shenzhen, China) (Figure 2). The aircraft has a
wingspan of 2.1 m and a take-off weight of 8.5 kg (1 kg
payload). This particular system was advantageous because it
could be hand-launched and recovered by parachute, therefore
allowing deployment at any site with a reasonable clearing
without a requirement for a runway. Power was provided by
a 12.7 Ah, 6S 22.2 Lithium Polymer (LiPo) battery, giving an
approximate flight duration of 50–70 min depending on the
weather conditions during the flight.

The vehicle featured a full auto-pilot computer with
supporting sensors [GNSS, barometric altitude, airspeed
indicator (ASI), and IMU]. The autopilot was capable of
navigating the aircraft along pre-planned waypoint missions.
Three wireless links were used to interact with the vehicle
during flight. The pilot safety link, operating on the 433 MHz
frequency, was used for initializing the automatic flight and
for manual control during the parachute landing. The second
link was a bi-directional telemetry modem operating on the 868
MHz frequency and was used for monitoring of flight statistics
(such as battery consumption) and to issue updated commands
to the autopilot. The third link was a live FPV video stream
from a camera in the nose of the aircraft operating on the 2.4
GHz frequency.

There are three internal cabins within the body of the “Titan”.
The first is the fuselage, which housed the control systems and
batteries. The second is the payload bay, which contained the
radiation sensor and its associated electronic control systems.
The final cabin, located toward the tail of the aircraft, contained
the parachute landing system and video transmitter.

The radiation sensing payload, supplied by Imitec (Bristol,
UK), followed a similar design to the detection systems utilized
within previous works by the authors (Martin et al., 2016, 2018;
Connor et al., 2018a,b). However, modifications were made
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FIGURE 1 | Study locations within the exclusion zone. Buryakivka and Kopachi are abandoned settlements and the “Red Forest” is a natural area.

to the system design in anticipation of the new challenges
posed by operating on a fixed-wing aircraft over a multi-rotor
UAS. Whilst the previous system comprised of one solid state
radiation detector, the updated system utilizes two SIGMA-50
CsI(Tl) scintillation detectors (Kromek Ltd., County Durham).
This was implemented to increase the active detection volume
of the system in order to offset the reduction in measured
count-rates associated with operating at an increased altitude.
An independent GNSS sensor allowed the radiation sensor
payload to operate independently of the flying hardware with
the exception of 12 V power supply. A secondary payload,
comprising a higher power laser-range finder, was added by UOB
to increase the fidelity of the height above ground measurements
required for post-processing the radiation data. It must be noted
that the data collected by the laser-range finder unit was not
utilized within the processing in this study. This was due to
practical considerations relating to the variable vegetation cover
experienced across the surveyed area. The data from this system
would have been used in an environment wherein vegetation
cover does not extremely distort the apparent form of the land
surface (e.g., an arid or urban environment).

2.2. Survey Locations
There are two separate zones in which the fixed-wing system
was deployed within the CEZ. The first region lies between
12 and 13 km due west of the ChNPP [51.379 N, 29.916 E]
(Figure 3A), near the former village of Buryakivka. This survey
area covers 2.4 km2 and bisects the main westward trending
plume of radioactivity deposited from the accident. This area was
used as an accessible initial test site to ensure the system behaved
as expected within a lower-risk, but real-world, environment. The

second region was significantly larger than the first, covering 12
km2 of the land immediately to the west and south of the ChNPP
Reactor 4 location. This area encompasses the “Red Forest” of
Chornobyl [51.385 N, 30.051 E], as well as extending as far south
as a former mechanical/farm yard near the settlement of Kopachi
[51.345077 N, 30.111382 E] (Figure 3B).

2.3. Survey Methodology
2.3.1. Operational Restrictions
Operating UASs in real-world environments is subject to
nationally varying sets of restrictions. These restrictions are in
place to maintain airspace safety for all aerial users. Within the
CEZ, all flights were conducted under standard visual line-of-
sight (VLOS), meaning that direct and unaided visual contact
with the aircraft was required at all times. It is not sufficient to be
able to just physically see the aircraft within VLOS restrictions,
instead the pilot must be able to ascertain the orientation of
the vehicle and be able to avoid other air users and/or obstacles
should they be present within the airspace. A number of take-off
and land zones were therefore used to split the CEZ into several
zones that could maximize coverage within the flight restrictions.
No extra modifications were required to operate under these
conditions. A minimum separation distance of 1 km from the
New Safe Confinement Building (the old Reactor Four site) was
also imposed in addition to the standard restrictions.

2.3.2. Flight Planning and Deployment
Each of the flights conducted using the fixed-wing system in the
CEZ followed the same operational process. Once a target region
was chosen, a small multi-rotor UAS (DJI Phantom 4 Pro) was
deployed to investigate the area for obstacles and potential radio
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FIGURE 2 | The fixed-wing vehicle and sub-system interconnection diagram.

interference sources to determine the minimum altitude that the
fixed-wing system can safely operate. The minimum altitude was
set by adding a margin of 15 m to the measured altitude of
the tallest structure present. Wherever possible, operating as low
as reasonably practical was the target for every survey. Minor
variations in the vegetation canopy height and the land surface
throughout the zone resulted in survey altitudes of between
40 and 60 m above ground level (agl). Flight velocities were
programmed to operate between 14 and 18 m s−1 airspeed,
although local wind conditions created significant variations in
the resulting ground-speed.

Once the flight altitude was decided, the flight paths were
planned in a parallel-line raster scan format. The separation
distance between each of the flight lines was equal to the survey
altitude in all cases. At this flight line separation, the half-
angle of the detectors produce a circle of investigation with a
radius equal to the height above ground level of the aircraft
(Martin, 2019, p. 77). Therefore, in the current flight planning
configuration, the detector system is considerably oversampling
the land; the measurement footprint from one flight line ends
along the ground trace of the previous flight line. Whilst this
is counter-intuitive to aiming to maximize spatial coverage, this
compromise was necessary to demonstrate the range of the
system whilst still maintaining VLOS with the aircraft. As the
fixed-wing system has an inherent turning radius that is larger
than the flight line separation, the parallel grid pattern was
produced by flying in a series of laterally-offset loops rather than
by flying each flight line in turn from one end of the survey to
the other.

The surveys within the CEZ were completed semi-
autonomously. The aircraft was hand-launched in automatic
flight mode on take-off and remained in automatic mode until
the landing phase of the flight. During the main flight phase,
internal parameters (battery voltage, airspeed, ground-speed
etc.) were monitored by the co-pilot using the ground station
software. Whenever necessary, certain parameters were altered
in-flight by the co-pilot under command from the pilot. Only

the landing phase of the flight was conducted manually, with
the pilot taking control of the aircraft upon its return to the
take-off location. The automatic return to home function was
programmed to bring the aircraft directly back to the take-
off location whilst climbing to 70 m agl. Due to the lack of
appropriate landing strips within the CEZ, the physical landing
of the aircraft was accomplished through the deployment of
a parachute.

2.4. Ground Investigation of Aerial Data
To further investigate the radiological measurements collected
by the UAS, a series of ground-based measurements were
collected within areas that were accessible to the ground team
over the 6 days of data. These measurements were collected
using a series of PED+ personal dosimeters (from TracercoTM)
and ground-based versions of the fixed-wing mapping system
presented in this study. The dosimeters were placed on the
body of each of the team of six operators within the CEZ and
continuously collected georeferenced dose-rate measurements
every 2 s, allowing for aerial measurements to be correlated
against ground measurements. The ground-based mapping
systems were deployed as handheld devices that were carried by
the operators throughout the target areas. Wherever safe and
permissible, measurements were recorded by walking in a series
of parallel grid lines to ensure optimal coverage throughout the
area. More direct routes and quantification pathways were used
if the dose-rates were considered high in order to minimize
exposure to operators.

2.5. Calibrations and Data Processing
Using aerial platforms to collect measurements about the
Earth’s surface often requires a number of processing steps
to correct the raw data to more appropriately reflect the
original signal. This is because the collected signal may go
through some elements of change during its travel between
the source and the detector. The same is especially true
for aerial gamma-ray measurements. The following procedure
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FIGURE 3 | A map showing all the measurements recorded by the fixed-wing system within (A) the Buryakivka testing region and (B) the region between the “Red

Forest” and Kopachi. The points are color-scaled according to their unprocessed total count intensity.

outlines the process used within this study to convert the
raw gamma-ray spectra obtained by the fixed-wing system
into a cesium equivalent dose-rate (CED), in µSv h−1,
at 1 m agl.

The raw 10 Hz measurements recorded by the system were
first integrated into 1 Hz intervals and corrected for the dead
time of the detector during the measurement. Then a correction
for the cosmic, aircraft and radon background signal was applied

to the data. This correction factor was determined by hovering
the detection system at incrementally increasing altitudes over
a wide meander bend of the River Pripyat, which is located
<20 km from both the Buryakivka and Red Forest survey
regions. The water within the river acts as an attenuatingmedium
for the terrestrial signature of the total radiation flux within
the surrounding area. With the terrestrial signal removed, the
resultant recorded spectrum represents the contribution of all
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other sources of radiation within the environment. This derived
background signal was subtracted from every terrestrial spectrum
recorded within the CEZ.

To keep integration times as short as possible and maximize
the achievable spatial resolution of the surveys, a fast Fourier
transform (FFT) was applied to the background-corrected
spectrum to remove high-frequency noise. The appropriate
filtering magnitudes/masks for this task were determined
experimentally by exposing the detection systems to a small
source of 137Cs for intervals of a few seconds and visually
inspecting the resultant unfiltered and filtered spectra. The
energy range of the Sigma-50 detectors used within the payload
is reported as 0 - 2 MeV. However the detection efficiency is
significantly reduced beyond 1.2 MeV, meaning that observable
signals within the potassium and uranium windows are unlikely
even after FFT filtering. Hence, spectral stripping cannot be
applied. Instead, a third-order polynomial estimation of the
baseline of the region surrounding the 137Cs spectral windowwas
calculated and subtracted from the FFT spectrum, removing the
Compton background below the peak and leaving only the direct
measurements of 137Cs.

Whilst the aircraft operates at a consistent altitude above the
take-off location, the ground surface underneath the aircraft can
vary significantly throughout the planned route. As a result,
the separation distance between the detector and its target is
also varying, which erroneously creates high or low artifacts
within the recorded data set. To overcome this issue, the
measurements were corrected to a consistent one meter agl
using a correction curve derived from hovering the detection
system at incrementally increasing altitude overland in the CEZ.
This was conducted using a multi-rotor UAS over a fixed-point
within a area of land presenting a uniform radiological signature
throughout the field of view (FOV) of the detector at the highest
altitude within the survey. Spectral information was collected for
90 s at while hovering at each of the 14 altitudes across the range
3 - 150m agl. The resulting spectra were split into four groups,
delineated by the energy of the recorded photons (total counts,
0–0.2, 0.2–0.4, and 0.4–0.8 MeV), and the relationship between
the altitude and energy-specific intensity was determined by
fitting an exponential regression line in the form of Equation
(1) (Figure 4).

I = I0.e
−kx (1)

In this relationship, I is the measured radiation intensity at
altitude, x, agl, I0 is the intensity at ground level (x = 0)
and k is an experimentally derived constant encompassing the
contributions of geometric dilution and attenuation by the
atmosphere between the detector and the source.

The height agl of the system was obtained by subtracting
the land surface height, obtained from an SRTM 30 m
digital elevation model (NASA JPL, 2013) of the CEZ, away
from the GPS altitude of the UAS. For this application of
converting measurements to dose-rate at 1 m agl, correcting
directly to ground level using the DEM was preferred over
using the single-point laser range-finder. This is because the
pulsed laser signal produced by the unit can be intercepted by

FIGURE 4 | A scatter plot depicting the results of the hover survey used to

determine the altitude correction curves for the CEZ for all four energy

groupings. The error bars for each measurement are equal to one standard

deviation of the data.

surfaces (tall vegetation canopies in particular) before reaching
the target ground surface, which can produce false altitude
artifacts/inconsistent correction surfaces within the data. In an
environment presenting less variability from vegetation cover,
the inbuilt laser range-finder would have been used over the
DEM-based correction.

Following the altitude correction of each measurement within
the survey, the intensity of 137Cs at 1 m agl are converted into
a CED using a laboratory defined calibration. This conversion
factor was determined by placing both the detection system and
a PED+ personal dosimeter (from TracercoTM) at a range of
distances away from several different sources of 137Cs. In total,
two sources were used (labeled RP5 and LRP10), varying in
activity between 500 and 1,500 kBq. Background measurements
were recorded for both sensors for 30 min and normalized
with respect to live time. For the active measurements, both
sensors were exposed to the source for 5 min at the same
separation distance. The time series data recorded by the
dosimeter and the net peak area of the 137Cs peak were
extracted and corrected for the background of the laboratory. The
conversion factor between the CED andmeasured 137Cs intensity
is represented by the line of best fit of a scatter plot of the two
variables (Figure 5).

3. RESULTS

3.1. Flight Characteristics and Duration
Over the 6 days of active fieldwork (17th April–24th April 2019),
a total distance of 583.8 km was flown by the fixed-wing system,
covering a total area of 14.8 km2. Table 2 shows the flight metrics
for all flights conducted with the fixed-wing UAS. The system
spent a total of 09h:17m:37s airborne, with an average flight
time of 39m:50s. Buryakivka was the region in which the largest
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FIGURE 5 | A scatter plot detailing the relationship between the net peak

counts of 137Cs recorded by the detector and the dose-rate resulting from
137Cs from two sources of different intensities.

TABLE 2 | Details of all of the flights conducted with the fixed-wing UAS within the

CEZ.

Flight code Date Altitude

(m)

Flight

Length (km)

Duration

(min:s)

Buryakivka Titan 1 17-04-2019 50 28.2 30:05

Buryakivka Titan 2 17-04-2019 45 28.0 31:51

Buryakivka Titan 3 17-04-2019 40 34.9 28:47

Buryakivka Titan 4 18-04-2019 40 42.7 39:02

Buryakivka Titan 5 18-04-2019 50 51.2 60:24

Buryakivka Titan 6 18-04-2019 50 51.7 48:42

Kopachi Titan 1 20-04-2019 50 52.9 52:23

Kopachi Titan 2 21-04-2019 50 60.1 65:58

Kopachi Titan 3 22-04-2019 50 39.7 30:11

Kopachi Titan 4 22-04-2019 50 39.1 30:36

Kopachi Titan 5 22-04-2019 60 39.8 30:31

RedForest Titan 1 23-04-2019 45 49.0 39:04

RedForest Titan 2 24-04-2019 45 44.6 39:23

RedForest Titan 3 24-04-2019 45 21.9 30:40

number of flights were conducted as this area was used as a semi-
controlled testing zone. These test flights were used to fine tune all
the aspects of the deployment procedure, including the pre-flight
surveys, take-off and landing phases before operating closer to
the ChNPP itself. The altitudes and flight velocities were varied
slightly between each flight to reach the optimal level that the
pilot was comfortable to operate subsequent surveys at. From
these flights, it was determined that the optimal flight velocity
was between 14 and 17ms−1 airspeed, although in real-terms, the
ground-speed value varied between individual flight paths within
the same survey due to local wind conditions.

The largest average distance traveled in a single flight by the
UAS was within the Kopachi region of the map [51.371 N, 30.065
E: 51.434 N, 30.114 E] with a value of 46.3 km. This region is
dominated by open fields featuring small amounts of vegetation
of <5 m in height, therefore presenting the most optimal
conditions for all flight phases. The open fields provided space
to take-off and land in any direction and permitted excellent
visibility to the aircraft during the in-flight phase, allowing line-
of-sight to bemaintained easily. The longest distance covered was
also in Kopachi, totalling 60.1 km in length. This value describes
roughly the total distance that can be covered safely by the UAS
given the current battery technology available to operators. If
possible, all the flights used within the survey would be closer to
this upper limit, but due to line-of-sight restrictions this was not
possible in all parts of the surveyed areas.

3.2. Radiological Monitoring
3.2.1. Buryakivka
The results of the derived CED for the Buirakivka survey area
are presented within Figure 6. The map within this figure is
produced from three flights conducted at 40–45m altitude agl,
flights conducted at more elevated altitudes during the testing
process have not been included within the map as many of
these cover the same areas. An inverse distance weighting (IDW)
interpolation algorithm has been applied to the data to produce
the color-scaled CED overlay, which is presented at a pixel
size of 20 × 20m. This resolution was chosen as it is slightly
coarser than the inline point spacing of the data set. The overall
trend of the map follows the expected pattern from previous
soil sampling investigations as presented within Kashparov et al.
(2018), exhibiting a contaminant plume trending east to west,
which drops off in intensity to the immediate north and south of
the central line. The maximum CED measured within this area
is 4.65 µSv h−1, measured at 51.363198N, 30.107020 E, which
is more than 23 times greater than the average total background
dose-rate of the UK (0.2 µSv h−1).

3.2.2. Red Forest and Kopachi
The measured CED for the region surrounding the ChNPP is
presented within Figure 7. The combined survey amalgamates
the data from seven flights conducted over 4 days of deployment.
Contrary to the data collected within the Buryakivka region
(section 3.2.1), all the surveys conducted within this area are
included within the presented data set (see Table 2 for full flight
details). The color-scaled overlay is once more presented at a
pixel size of 20 × 20m. As expected, the overall CED measured
in the area surrounding the ChNPP is significantly larger than
that measured in Buryakivka. The maximum CED successfully
recorded by the fixed-wing system was 12.8 µSv h−1, which is
2.8 times greater than the maximum CED recorded within the
Buryakivka region. The map shows two main areas displaying
elevated dose-rates. The first is a sharply delineated hot spot
that extends immediately to the west of the ChNPP itself and
covers the “Red Forest” area [51.379N, 30.071 E]. The second is
a much broader zone of elevated intensity, extending southwards
from the plant toward the village of Kopachi [51.366N, 30.100
E]. This overall trend is also depicted within the soil sampling
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FIGURE 6 | The cesium equivalent dose-rate (CED) of the Buryakivka area.

investigations previously conducted by Kashparov et al. (2018),
showing a general agreement between this dataset and previously
published works from other institutions.

Located at the south-eastern corner of the area is a region
of elevated dose-rate (3.3 µSv h−1) that lies within an area
of relatively low dose-rate (0.51–1.0 µSv h−1). The hot spot
[51.343843N, 30.110399 E] manifests in an almost idealized
point-source geometry when compared to the broad spreading
of radioactivity evident within the measurements collected in
the area surrounding it. The shape and location of the hot
spot suggest that its presence is the result of anthropogenic
concentration of radioactivity rather than the natural deposition
following the accident. Dose-rate information could not be
extracted from the cross-hatched area within Figure 7 due to
detector saturation issues.

4. DISCUSSION

4.1. Radiological Monitoring
Using the fixed-wing UAS, 15 km2 of the CEZ was successfully
mapped, detailing the dose-rate variation relating to the
137Cs concentration in the ground and other surface features.
Unfortunately, the high-intensity plume extending over the “Red
Forest” could not be presented in its entirety as its significant
radiological fingerprint caused an overloading (saturation) of
the electronics of the detector. Whilst total count data could
still be recorded, the measured gamma spectrum experienced
significant degradation when exposed to total count rates of over

5,500 counts per second (cps). This reduction in signal quality
manifests in the form of shifting the 137Cs peak toward a lower
gamma energy (i.e., shifting the peak to the left) and significantly
increasing the full width at half maximum (FWHM) value. This
leads to non-sensical values within the analysis, which have been
redacted from the map presented within this study. Detailed
analysis of the spectral data indicates that reliable information
can be extracted from the detector up to around 5,250 cps,
as the peak positions and FWHM values remain within the
manufacturers tolerance. Any measurements with a total count
rate of greater than 5,250 cps have been removed from the
presented dataset.

Previous surveys have measured dose-rates within a small
portion of the “Red Forest” area to be up to around 170 µSv
h−1 (Burtniak et al., 2018). These surveys were conducted within
the portion of the “Red Forest” that could not be mapped by our
system at much lower altitudes (5m) and much slower velocities
that are typical of multi-rotor surveys. Despite being inherently
unreliable, the total-count data recorded by the fixed-wing
system (Figure 3) reported a maximum count-rate of 12,436 cps
at 45m altitude. Even though the measurements were saturated,
using this count-rate as a minimum value for the radiological
intensity within this area would produce an expected dose rate
of at least 95 µSv h−1 (based upon the approximate ratio of
the altitude corrected total intensity to cesium dose-rate). As the
detector is facing an overload during these measurements, the
real total counts value would most likely be greater, producing
a larger CED.
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FIGURE 7 | The cesium equivalent dose-rate (CED) of the “Red Forest” area surrounding the ChNPP.

Overall, the general results from the UAS agrees well with
previous datasets collected though other methods. The extensive
soil sampling investigations published by Kashparov et al.
(2018) provide excellent overall coverage and measurement
accuracy throughout the CEZ, but fail to provide an easily
repeatable method of monitoring radiation within post-
disaster environments. The amount of labor-hours involved in
conducting ground sampling surveys of this size are significant
and the results are comparatively low-resolution when assessed
against more mobile methods. The effects of this are best shown
by the localized hot spot present near the south-eastern corner
of the map [51.343843 N, 30.110399 E], which was previously
unreported in literature until this study was conducted.

Following the identification of the hot spot from the
raw data collected by the aircraft, a ground-based team was
deployed to investigate the area covered by the elevated intensity
region. Upon arrival, this team used SIGMA-50 detectors,
Geiger-Muller (GM) tubes and PED+ personal dosimeters to
monitor the radioactive output of this region. The source of
the radioactivity was determined to be a series of funnel-
shaped metal structures that seem to have been used to
mechanically sort through material in an attempt to reduce
the overall volume of contaminated material following the
accident (Figure 8). These structures will be referred to as

“hoppers” for the remainder of this document. The residual
radiological fingerprint of this process is significant. Ground-
measurements, acquired using dosimeters, measured more than
2 mSv h−1 directly in the vicinity of the “hoppers.” Attempts at
recording gamma spectrometry measurements were futile due to
saturation issues.

The measurements collected by the aircraft at this point in
space are significantly lower than the values measured by the
ground team (3.3 µSv h−1 vs. 2 mSv h−1). There may be a
number of reasons for the discrepancy between these values.
Firstly, the analysis performed on the results collected by the
aircraft focuses solely on the 137Cs signal, ignoring contributions
from any other radionuclides (these are outside the scope of
this study and will be investigated in future studies). The
myriad of radioactive material released from the accident is
highly complex and the measured contribution of 137Cs is but
a component of the total output (Smith and Beresford, 2005;
Burtniak et al., 2018). Given that the “hopper” hot spot is so
intensely radioactive, the on-ground measurements could be
recording inputs from other radionuclides in addition to the
measured 137Cs signal. This could potentially include gamma-
ray signals from 241Am, which emits a low energy gamma-
ray (0.06 MeV) that is more easily attenuated by the medium
between the source and the detector (see Figure 4). These
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kinds of signals are difficult to detect with any confidence
at the altitudes used within this survey, especially because
the incomplete transfer of energy between incoming photons
and the detection crystal (very common for small-volume,
room temperature detection systems Gilmore, 2008) creates
a high background signal at the low energy range of the
spectrum. Radionuclides other than 241Am and 137Cs are also
expected to be present within the signal emanating from this
region, including contributions from fission products from spent
nuclear fuel.

Another reason for the observed disparity between the aerial
measurements and the on-ground measurements is the short
sampling time and FOV averaging at each point on the earth.
As the system operates at a minimum velocity of 14 ms−1,
the measured signal consists of a sampling area of 1,120 m2

for a single, 1-s measurement before the altitude correction
is applied. Highly localized variations of a few meters in area
will therefore not be fully resolved, instead being averaged with
the surrounding area that constitutes a single measurement.
This provides one possible explanation into the differences in
expected dose-rate and measured dose-rate within this study.
Once more, it must be noted that the dose-rate measured here
considers only the dose-rate from 137Cs, whereas raw ground
measurements recorded by personal dosimeters are collecting
information from all sources (including natural radionuclides
and other sources released during the accident). The time
between the occurrence of the accident and this study is also
an important consideration. In the three decades since the
accident, radioactive material has had time to penetrate the
ground surface and new sediment has had time to be deposited
on top of the original radionuclide deposition. The burial
of material means that there is not only more attenuating
material between the detector and its target source, but the
material is also much denser than air, resulting in fewer
interactions with unscattered 137Cs photons with the active
detection volume.

The overall mission objective to deploy the fixed-wing
system within a real-world post-disaster environment has been
achieved. As far as the authors are aware, this is the first
time that this variation of a radiation mapping UAS has
been deployed in a non-controlled situation to map terrestrial
gamma radiation. Previous iterations of this detection unit for
multi-rotor systems have been successfully utilized in similar
environments within the Fukushima fallout zone in Japan,
albeit these zones have been less intense than the levels of
radioactivity experienced in the proximity of the “Red Forest.”
One of the advantages of using lightweight UASs is that payloads
can be altered, or completely removed, with ease. Given the
observed limitations of the detectors used within the system
at relatively high gamma fluxes, these would likely be changed
in future iterations. Cerium Bromide (CeBr3) and Lanthanum
Bromide (LaBr3) detection systems are being considered for
future systems as these provide excellent energy resolutions
and optical yields, even at small-volumes (Lowdon et al.,
2019).

In terms of short-term improvements, one of the two Sigma-
50 units will be swapped for a smaller-volume GR1 unit

(a CZT semi-conductor detector from Kromek Group PLC,
County Durham, UK). This detector has a better tolerance for
high gamma fluxes and an improved energy resolution when
compared to the Sigma-50 unit used within the current system.
It is however, more vibrationally sensitive and will require some
efforts to dampen these effects within the UAS payload. A further
survey specifically aiming to map the saturated zone of the “Red
Forest” (see Figure 7) using the updated system is planned for
October 2019 to improve upon the results collected herein.

4.2. System Evaluation and Wider
Applications
The results from the radiological investigations of the CEZ
suggest that the fixed-wing system presented within this study is
effective at mapping 137Cs distribution, although the significant
radioactivity of the “Red Forest” proved to be too much for the
detectors used within the payload.Whilst this conclusion satisfies
the overall aim of this study, there are a few more considerations
to be discussed before the system can be considered for use
in more routine situations or be implemented into emergency
procedures in the future.

UAS-based investigations are often at the mercy of the
weather. Certain counter-measures can be implemented in some
cases to overcome problems, for example, waterproofing the
central electronic components can allow certain types of UASs
to operate even in wet weather. However, the fixed-wing UAS
used in this study is sensitive to variations in localized wind
velocities. The surveys were conducted at a target velocity 14–
18 ms−1, but on some occasions ground-speeds of up to 25
ms−1 were recorded during survey lines orientated such that
the aircraft experienced a tailwind. As previously mentioned
within section 2.3, the differences in wind velocities experienced
by the UAS during individual legs of the same survey create
inconsistencies in recorded data. The system records raw data
at 10 Hz before being resampled in the post-processing phase
into 1 Hz intervals. Differences in the velocity of the aircraft
mean that the effective sampling area of each measurement
varies throughout the survey. As a result, the pixel size has
been increased slightly to a lower resolution in the final map to
encompass some of this variation.

Even though UASs with similar or greater ranges have
been reported within the literature, the fixed-wing UAS used
within this study is considerably lighter than these reported
platforms. The Yamaha RMAX platform utilized within Sanada
and Torii (2014) weighs 100.5 kg with the under-mounted
radiation mapping payload attached, whilst the system presented
herein weighs 8.5 kg by comparison. Whilst the radiation
mapping payload used within Sanada and Torii (2014) was
able to carry a larger payload (resulting in larger detection
volumes), the extra weight is significant in terms of the
operation of UAS in the real-world. Regulatory restrictions
exist for the operation of heavier platforms around the world
as they present a greater hazard to the environment through
the increased energy involved in an impact (Connor et al.,
2016). As a result, it is easier to deploy lighter platforms within
surveys globally.
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FIGURE 8 | Aerial photographs of the “hopper” hot spot, presented in a plan view (Left) and a areal view in context of the local area (Right).

The concept of utilizing fixed-wing vehicle for this task
aims to bridge the gap between manned aircraft and multi-
rotor capabilities. Currently, multi-rotor UASs represent the
high-resolution end-member of the airborne radiation mapping
spectrum, often achieving sub-10 m pixel sizes (Martin et al.,
2015, 2016; Burtniak et al., 2018; Connor et al., 2018a,b). Manned
aircraft systems (MASs) represent the opposite end of the scale,
operating at between 90 and 200 m agl and achieving spatial
resolutions of 200–500 m (Pitkin and Duval, 1980; Sanderson
and Cresswell, 2008).Within this survey, operating altitudes were
maintained at 40–60 m agl, with a spatial resolution of 20 m
after the post-processing procedure. This successfully provides
a middle ground between the two end-members, both in terms
of the resolution and total coverage capabilities of the system. It
is worth noting that the flight line separation can be increased
if the survey values absolute coverage over spatial resolution. As
the detector FOV increases linearly with altitude, the flight line
spacing could be increased up to two times the altitude of flight
without incurring a loss of net spatial coverage.

As well as bridging the gap between current methods, there
is also the potential that manned aircraft could be superseded
by using fixed-wing UASs in the future, especially with sufficient
improvements in battery technology. This is especially true
when considering financial factors. The total cost of building
and deploying the UAS used herein was $24,000 (including all
parts, labor costs for build and deployment and insurance costs),
whereas a manned survey would be considerably more expensive.
The cost for repeat surveys following the initial investment totals
at $9,000 for the equivalent survey conducted within this study.
This is based on salary estimates and operational costs for a three
man crew over 6 days of active operation. If the equipment is
used multiple times, the cost-benefit of the system is significantly
improved over utilizing manned aircraft.

Without much prior familiarity of operating within the CEZ,
the fixed-wing system was successfully deployed at as low an
altitude as reasonably possible using information obtained from
on the fly pre-flight surveys.With a good knowledge of the survey
area, it would be possible to achieve much more. Overall, the
authors believe that there is extreme promise in widely utilizing
these systems for a number of survey applications in the future
after the implementation of the improvements suggested herein.

5. CONCLUSIONS AND FUTURE WORK

This study presents the most comprehensive radiation map of
the CEZ ever produced from a UAS. Over the 6 days of active
fieldwork with the fixed-wing system, 15 km2 was investigated
in a high spatial resolution (20 m pixel−1). In total, more than
580 km were flown across the region in a total flight time of
09h:17m:37s. The system demonstrated that radiation mapping
investigations using UASs can be launched from safe-zones
outside contaminated regions and operated continuously for
more than an hour before returning to the safe-zone to land.
Some previous systems presented within the literature have been
required to launch within the contaminated zones at the risk of
the operators.

Due to issues with detector saturation, the area in the most
radiologically intense portions of the “Red Forest” were not
presented with the mapped CED as this information could not be
reliably extracted from the spectra recorded over this area. This
problem is hoped to be solved in the future by operating using a
different dual detector set-up (Sigma-50 and GR1 combination).
In this configuration, the Sigma-50 would be used to map
the areas displaying lower contamination concentrations (as
presented by more than 85% of the area mapped in this study)
and the GR1 would be used to map the areas wherein the
Sigma-50 was saturated.

One of the most interesting findings was the presence of
the previously unreported, anthropogenically-enhanced hot spot
located in the south-eastern corner of the surveyed area. With
the knowledge that the 2 mSv h−1 hot spot exists, a coordinated
ground sampling investigation will be conducted to determine
the nature of the radionuclide content and correlated against the
measurements collected by the aerial platform.

The work conducted within the CEZ was part of a multi-
faceted field investigation using numerous types of radiation
monitoring methods. These included both fixed-wing and low-
altitude multi-rotor UAS surveys, as well as ground-based
monitoring methods using both tracked robots and humans. The
data presented herein will be combined with the measurements
recorded using the other methods in future works to complete
a comprehensive radiological survey of the CEZ using mobile
radiation monitoring methods. The demonstration of this system
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in this environment has further-reaching consequences than just
the monitoring of post-disaster environments. With alterations
to the included detection systems, using recommendations from
Lowdon et al. (2019), this system could become a low-cost
solution to monitoring large areas of land for mineral resources.
This could be of particular interest to developing countries who
currently struggle to conduct mineral reserve estimates due to the
high expenditure involved in charteringmanned-aircraft surveys.
Further work within the CEZ is planned for October 2019 and
April 2020.
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A Corrigendum on

Radiological Mapping of Post-Disaster Nuclear Environments Using Fixed-Wing Unmanned

Aerial Systems : A Study From Chornobyl

by Connor, D. T., Wood, K., Martin, P. G., Goren, S., Megson-Smith, D., Verbelen, Y., et al. (2020).
Front. Robot. AI 6:149. doi: 10.3389/frobt.2019.00149

In the original article, there was a mistake in Figure 6 and Figure 7 as published. The published
dose-rates are incorrect due to a typing error within the code used to process the radiation data.
Instead of correcting the measurements for the live time of the detector (TL), the typing error
caused the intensity measurements to be adjusted according to the uncorrected sample time (TR).
This affects the dose-rate magnitude of all the measurements presented but does not affect the trend
or the reliability of the dataset. The corrected Figure 6 and Figure 7 appears below.

A correction has been made to Section 3.2 (Radiological Monitoring), Section 3.2.1
(Buryakivka), Paragraph 1:

“The results of the derived CED for the Buirakivka survey area are presented within Figure 6.
The map within this figure is produced from three flights conducted at 40–45m altitude agl, flights
conducted at more elevated altitudes during the testing process have not been included within the
map as many of these cover the same areas. An inverse distance weighting (IDW) interpolation
algorithm has been applied to the data to produce the color-scaled CED overlay, which is presented
at a pixel size of 20× 20m. This resolution was chosen as it is slightly coarser than the inline point
spacing of the data set. The overall trend of the map follows the expected pattern from previous
soil sampling investigations as presented within Kashparov et al. (2018), exhibiting a contaminant
plume trending east to west, which drops off in intensity to the immediate north and south of
the central line. The maximum CED measured within this area is 4.65 µSv h−1, measured at
51.363198N, 30.107020 E, which is more than 23 times greater than the average total background
dose-rate of the UK (0.2 µSv h−1).”

A correction has also beenmade to Section 3.2 RadiologicalMonitoring, Section 3.2.2 Red Forest
and Kopachi, Paragraphs 1 and 2:
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FIGURE 6 | The cesium equivalent dose-rate (CED) of the Buryakivka area.

“The measured CED for the region surrounding the ChNPP
is presented within Figure 7. The combined survey amalgamates
the data from seven flights conducted over 4 days of deployment.
Contrary to the data collected within the Buryakivka region
(section 3.2.1), all the surveys conducted within this area are
included within the presented data set (see Table 2 for full flight
details). The color-scaled overlay is once more presented at a
pixel size of 20 × 20m. As expected, the overall CED measured
in the area surrounding the ChNPP is significantly larger than
that measured in Buryakivka. The maximum CED successfully
recorded by the fixed-wing system was 12.8 µSv h−1, which is
2.8 times greater than the maximum CED recorded within the
Buryakivka region. The map shows two main areas displaying
elevated dose-rates. The first is a sharply delineated hot spot
that extends immediately to the west of the ChNPP itself and
covers the “Red Forest” area [51.379N, 30.071 E]. The second is
a much broader zone of elevated intensity, extending southwards
from the plant toward the village of Kopachi [51.366N, 30.100
E]. This overall trend is also depicted within the soil sampling
investigations previously conducted by Kashparov et al. (2018),
showing a general agreement between this dataset and previously
published works from other institutions.”

“Located at the south-eastern corner of the area is a region
of elevated dose-rate (3.3 µSv h−1) that lies within an area
of relatively low dose-rate (0.51–1.0 µSv h−1). The hot spot
[51.343843N, 30.110399 E] manifests in an almost idealized
point-source geometry when compared to the broad spreading
of radioactivity evident within the measurements collected in

the area surrounding it. The shape and location of the hot
spot suggest that its presence is the result of anthropogenic
concentration of radioactivity rather than the natural deposition
following the accident. Dose-rate information could not be
extracted from the cross-hatched area within Figure 7 due to
detector saturation issues.”

A correction has also been made to Section 4.1 Radiological
Monitoring, Paragraphs 2 and 5:

“Previous surveys have measured dose-rates within a small
portion of the “Red Forest” area to be up to around 170 µSv
h−1 (Burtniak et al., 2018). These surveys were conducted within
the portion of the “Red Forest” that could not be mapped by
our system at much lower altitudes (5m) and much slower
velocities that are typical of multi-rotor surveys. Despite being
inherently unreliable, the total-count data recorded by the fixed-
wing system (Figure 3) reported a maximum count-rate of
12,436 cps at 45m altitude. Even though the measurements were
saturated, using this count-rate as a minimum value for the
radiological intensity within this area would produce an expected
dose rate of at least 95µSv h−1 (based upon the approximate ratio
of the altitude corrected total intensity to cesium dose-rate). As
the detector is facing an overload during these measurements, the
real total counts value would most likely be greater, producing a
larger CED.”

“The measurements collected by the aircraft at this point in
space are significantly lower than the values measured by the
ground team (3.3 µSv h−1 vs. 2 mSv h−1). There may be a
number of reasons for the discrepancy between these values.
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FIGURE 7 | The cesium equivalent dose-rate (CED) of the “Red Forest” area surrounding the ChNPP.

Firstly, the analysis performed on the results collected by the
aircraft focuses solely on the 137Cs signal, ignoring contributions
from any other radionuclides (these are outside the scope of this
study and will be investigated in future studies). The myriad of
radioactive material released from the accident is highly complex
and themeasured contribution of 137Cs is but a component of the
total output (Smith and Beresford, 2005; Burtniak et al., 2018).
Given that the “hopper” hot spot is so intensely radioactive, the
on-ground measurements could be recording inputs from other
radionuclides in addition to the measured 137Cs signal. This
could potentially include gamma-ray signals from 241Am, which
emits a low energy gamma-ray (0.06 MeV) that is more easily
attenuated by the medium between the source and the detector

(see Figure 4). These kinds of signals are difficult to detect with
any confidence at the altitudes used within this survey, especially
because the incomplete transfer of energy between incoming
photons and the detection crystal (very common for small-
volume, room temperature detection systems Gilmore, 2008)
creates a high background signal at the low energy range of the
spectrum. Radionuclides other than 241Am and 137Cs are also
expected to be present within the signal emanating from this
region, including contributions from fission products from spent
nuclear fuel.”

The authors apologize for these errors and state that they do
not change the scientific conclusions of the article in any way.
The original article has been updated.
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As robots make their way out of factories into human environments, outer space,

and beyond, they require the skill to manipulate their environment in multifarious,

unforeseeable circumstances. With this regard, pushing is an essential motion primitive

that dramatically extends a robot’s manipulation repertoire. In this work, we review the

robotic pushing literature. While focusing on work concerned with predicting the motion

of pushed objects, we also cover relevant applications of pushing for planning and

control. Beginning with analytical approaches, under which we also subsume physics

engines, we then proceed to discuss work on learning models from data. In doing so,

we dedicate a separate section to deep learning approaches which have seen a recent

upsurge in the literature. Concluding remarks and further research perspectives are given

at the end of the paper.

Keywords: robotics, pushing, manipulation, forward models, motion prediction

1. INTRODUCTION

We argue that pushing is an essential motion primitive in a robot’s manipulative repertoire.
Consider, for instance, a household robot reaching for a bottle of milk located in the back of the
fridge. Instead of picking up every yogurt, egg carton, or jam jar obstructing the path to create space,
the robot can use gentle pushes to create a corridor to its lactic target. Moving larger obstacles out of
the way is even more important to mobile robots in environments as extreme as abandoned mines
(Ferguson et al., 2004), the moon (King, 2016), or for rescue missions, such as for the Fukushima
Daiichi Nuclear Power Plant. In order to save cost, space, or reduce payload, mobile robots are
often not equipped with grippers, meaning that prehensile manipulation is not an option. Even in
the presence of grippers, objects may be too large or too heavy to grasp.

In addition to the considered scenarios, pushing has numerous beneficial applications that come
to mind less easily. For instance, pushing is effective at manipulating objects under uncertainty
(Brost, 1988; Dogar and Srinivasa, 2010), and for pre-grasp manipulation, allowing robots to bring
objects into configurations where they can be easily grasped (King et al., 2013). Dexterous pushing
skills are also widely applied and applauded in robot soccer (Emery and Balch, 2001).

Humans perform skilful manipulation tasks from an early age, and are able to transfer behaviors
learned on one object to objects of novel sizes, shapes, and physical properties. For robots, achieving
those goals is challenging. This complexity arises from the fact that frictional forces are usually
unknown but play a significant role for pushing (Zhou et al., 2016). Furthermore, the dynamics
of pushing are highly non-linear, with literal tipping points, and sensitive to initial conditions (Yu
et al., 2016). The large body of work on robotic pushing has produced many accurate models for
predicting the outcome of a push, some analytical, and some data-driven. However, models that
generalize to novel objects are scarce (Kopicki et al., 2017; Stüber et al., 2018), highlighting the
demanding nature of the problem.
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In this paper, we review the robotic pushing literature.
We focus on work concerned with making predictions of the
motion of pushed objects, but we also cover relevant applications
of pushing for planning and control. This work is primarily
targeted at newcomers to robotic pushing, such as Ph.D. students,
interested in understanding the evolution of the field. While the
main body of this paper focuses on a qualitative analysis of the
presented methods, the mathematical treatment is delivered as a
set of mini-lectures in the figures. We use the figures to “draw”
on the blackboard, thus providing a geometrical intuition for
important formalizations used across the literature. Each figure
is accompanied by a caption explaining themathematical content
in an accessible yet careful way.

Related to our work is the survey conducted by Ruggiero
et al. (2018) which covers the literature on planning and control
for non-prehensile dynamic manipulation. Pushing is one of
the motion primitives which they consider, among throwing,
catching, and others.

In the next section, we provide the problem statement of
this survey (section 2). Subsequently, we present the existing
literature, beginning with analytical approaches (section 3),
under which we also subsume physics engines. We then proceed
to discuss data-driven approaches (section 4), including deep
learning methods which have recently become very popular in
the literature. Finally, we conclude by summarizing the presented
approaches and by discussing open problems and promising
directions for future research (section 5).

2. PROBLEM STATEMENT

Even in ideal conditions, such as structured environments
where an agent has a complete model of the environment
and perfect sensing abilities, the problems of robotic grasping
and manipulation are not trivial. By a complete model of the
environment we mean that physical and geometric properties
of the world are exactly known, e.g., pose, shape, and friction
parameters, as well as the mass of the object we wish to
manipulate. In fact, the object to be manipulated is indirectly
controlled by contacts with a robot manipulator (e.g., pushing
by a contacting finger part). For planning and control, robots
need either an inverse model (IM) or a forward model (FM).
IMs compute the action that transforms the current state into
the target state (see Figure 1). In contrast, FMs predict the next
state resulting from applying an action in the current state (see
Figure 2). Depending on the type of model used, a variety of
planning and control strategies exist. For instance, an agent may
use an FM to imagine the likely outcomes from all possible
actions and then choose the action which achieves the most
desirable end state (e.g., Zito et al., 2012). An example of an
IM-based controller is the work of Igarashi et al. (2010) where
a dipole-like vector field is used to compute the direction of
motion of a robot pusher such that the object is pushed along
a specified path. As manipulation and grasping problems are
defined in continuous state and action spaces, finding an optimal
continuous control input to achieve the desired state is often
computationally intractable.

FIGURE 1 | An inverse model computes an action which will affect the

environment such that the next desired state (or configuration) is achieved

from the current state.

FIGURE 2 | A forward model makes a prediction on how an action will affect

the current state of the environment by returning the configuration after the

action is taken.

Even more challenging is the problem of grasping and
manipulation in unstructured environments, where the ideal
conditions of structured environments do not exist. There are
several reasons why an agent may fail to build a complete
description of the state of the environment: sensors are noisy,
robots are difficult to calibrate, and actions’ outcomes are
unreliable due to unmodeled variables (e.g., friction, mass
distribution). Uncertainty can be modeled in several ways,
but in the case of manipulation there are typically two types
of uncertainty:

• Uncertainty in physical effects: occurs when the robot
acts on external bodies via physical actions (e.g., contact
operations). This interaction transforms the current state
of the world according to physical laws which are not
fully predictable. For example, a pushed object may slide,
rotate or topple with complex motions which are extremely
difficult to predict, and involve physical parameters which
may not be known. We can think of this as uncertainty on
future states.

• Uncertainty in sensory information: occurs when some of
the quantities that define the current state of the world
are not directly accessible to the robot. Thus the necessity
to develop strategies to allow the robot to complete
tasks in partial ignorance by recovering knowledge of
its environment. When executing robotic actions in such
cases, sensory uncertainty may propagate to the result of
the action.

This paper is concerned with the evolution of models to
predict object motions and their application in robotics. Table 1
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TABLE 1 | Summary of the literature a glance.
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Mason (1982) ✓ ✓ ✓ ✓ ✓

Mason (1986b) ✓ ✓ ✓ ✓ ✓ ✓

Peshkin and Sanderson (1988a,b) ✓ ✓ ✓ ✓ ✓ ✓

Goyal et al. (1991) ✓ ✓ ✓ ✓ ✓

Alexander and Maddocks (1993) ✓ ✓ ✓ ✓ ✓

Lee and Cutkosky (1991) ✓ ✓ ✓ ✓ ✓ ✓

Lynch et al. (1992) ✓ ✓ ✓ ✓ ✓

Howe and Cutkosky (1996) ✓ ✓ ✓ ✓

Mason (1990) ✓ ✓ ✓ ✓

Mayeda and Wakatsuki (1991) ✓ ✓ ✓ ✓

Akella and Mason (1992, 1998) ✓ ✓ ✓ ✓

Narasimhan (1994) ✓ ✓ ✓ ✓ ✓ ✓

Lynch and Mason (1996) ✓ ✓ ✓ ✓ ✓ ✓

Agarwal et al. (1997) ✓ ✓ ✓ ✓ ✓

Nieuwenhuisen et al. (2005) ✓ ✓ ✓ ✓ ✓ ✓

de Berg and Gerrits (2010) ✓ ✓ ✓ ✓ ✓

Miyazawa et al. (2005) ✓ ✓ ✓ ✓

Cappelleri et al. (2006) ✓ ✓ ✓ ✓ ✓

Dogar and Srinivasa (2011) ✓ ✓ ✓ ✓ ✓

Cosgun et al. (2011) ✓ ✓ ✓ ✓

Lee et al. (2015) ✓ ✓ ✓ ✓

King (2016) ✓ ✓ ✓ ✓

H
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d

Lynch (1993) ✓ ✓ ✓ ✓

Yoshikawa and Kurisu (1991) ✓ ✓ ✓ ✓

Ruiz-Ugalde et al. (2010, 2011) ✓ ✓ ✓ ✓

Zhu et al. (2017) ✓ ✓ ✓

Bauza and Rodriguez (2017) ✓ ✓ ✓ ✓ ✓

D
y
n
a
m
ic

a
n
a
ly
s
is

Brost (1992) ✓ ✓ ✓

Jia and Erdmann (1999) ✓ ✓ ✓ ✓

Behrens (2013) ✓ ✓ ✓ ✓

Chavan-Dafle and Rodriguez (2015) ✓ ✓ ✓ ✓ ✓

Woodruff and Lynch (2017) ✓ ✓ ✓ ✓ ✓
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Zito et al. (2012) ✓ ✓ ✓ ✓ ✓

Scholz et al. (2014) ✓ ✓ ✓ ✓ ✓

Zhu et al. (2017) ✓ ✓ ✓ ✓
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Moldovan et al. (2012) ✓ ✓ ✓ ✓

Ridge et al. (2015) ✓ ✓ ✓

Zrimec and Mowforth (1991) ✓ ✓ ✓ ✓

Salganicoff et al. (1993) ✓ ✓ ✓ ✓

Walker and Salisbury (2008) ✓ ✓ ✓

Lau et al. (2011) ✓ ✓ ✓

Krivic and Piater (2019) ✓ ✓ ✓ ✓

Kopicki et al. (2011, 2017) ✓ ✓ ✓ ✓ ✓

Stüber et al. (2018) ✓ ✓ ✓ ✓ ✓

Meriçli et al. (2015) ✓ ✓ ✓ ✓
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TABLE 1 | Continued
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Denil et al. (2016) ✓ ✓ ✓

Chang et al. (2016) ✓ ✓ ✓

Li et al. (2018) ✓ ✓ ✓ ✓ ✓

Watters et al. (2017) ✓ ✓ ✓ ✓

Fragkiadaki et al. (2015) ✓ ✓ ✓ ✓

Ehrhardt et al. (2017) ✓ ✓ ✓ ✓

Byravan and Fox (2017) ✓ ✓ ✓ ✓

Finn et al. (2016) ✓ ✓ ✓

summarizes the literature at a glance. The papers are classified
according to the type of approach implemented. We identify the
following six classes.

1. Purely analytical. This is mostly seminal work drawn from
classical mechanics that uses the quasi-static assumption.
To be precise, some of these approaches also venture into
dynamic analysis, but with many simplifying assumptions
(section 3.1.1).

2. Hybrid. Works in this class extend analytical approaches with
data-driven methods. Whilst the interactions between objects
are still represented analytically, some quantities of interest
are estimated based on observations, e.g., the coefficients of
friction (section 3.1.2).

3. Dynamic analysis. These approaches integrate dynamics in
the model (section 3.2.1).

4. Physics engines. Here we consider work that employs a
physics engine as a “black box” to make predictions about the
interactions (section 3.2.2).

5. Data-driven. Such models learn how to predict physical
interaction from examples (sections 4.1 and 4.2).

6. Deep learning. As the data-driven approaches, such models
learn how to construct an FM from examples. The key insight
is that the deep learning approaches are based on feature
extraction (section 4.3).

The features highlighted for each approach are as follows.

• The assumptions made by the authors on their approach.
We highlight i) the quasi-static assumption in the model,
ii) if it is a seminal work on 2D shapes, and iii) if
the method required a known model of the object to
be manipulated.

• The type of motion analyzed in the paper, such as 1D, planar
(2D translation and 1D rotation around the x−axis), or full 3D
(3D translation and 3D rotation).

• The aim of the paper. We distinguish between predicting
the motion of the object, estimating physical parameters,
planning pushes, and analysing a push to reach a
stable grasp.

• The model. We distinguish between analytical, constructed
from data, and by using a physics simulator.

3. ANALYTICAL APPROACHES

3.1. Quasi-Static Planar Pushing
Early work on robotic pushing focused on the problem of
quasi-static planar pushing of sliding objects. In a first phase,
several researchers, following pioneering work by Matthew T.
Mason, approached the problem analytically, explicitly modeling
the objects involved and their physical interactions whilst
drawing on theories from classical mechanics. More recently,
this tradition has moved to extend analytical models with more
data-driven methods.

3.1.1. Purely Analytical Approaches
To briefly introduce the problem, planar pushing (Mason, 1982),
refers to an agent pushing an object such that pushing forces lie in
the horizontal support plane while gravity acts along the vertical.
Both pusher and pushed object move only in the horizontal
plane, effectively reducing the world to 2D.Meanwhile, the quasi-
static assumption (Mason, 1986b) in this context means that the
involved objects’ velocities are small enough that inertial forces
are negligible. In other words, objects only move when pushed
by the robot. Instantaneous motion is then the consequence
of the balance between contact forces, frictional forces, and
gravity. The quasi-static assumption makes the problem more
tractable, yielding simpler models. A key challenge in predicting
the motion of a pushed object under manipulation is that
the distribution of pressure at the contact between object and
supporting surface is generally unknown. Hence, the system of
frictional forces that arise at that contact is also indeterminate
(Mason, 1982).

Mason (1982, 1986a) started the line of work on pushing,
proposing the voting theorem as a fundamental result. It allows
one to find the sense of rotation of a pushed object given the
pushing direction and the center of friction without requiring
knowledge of the pressure distribution. Drawing on this seminal
work, Peshkin and Sanderson (1988a,b) found bounds on
the rotation rate of the pushed object given a single-point
push. Following that, Goyal et al. (1991) introduced the limit
surface which describes the relationship between the motion
of a sliding object and the associated support friction given
that the support distribution is completely specified. Under
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FIGURE 3 | The slider S (blue) is a rigid object in the plane R
2, and its configuration space is R2

×2, i.e., 2D translation and one rotation over the x−axis. The slider is

pushed by a rigid pusher P (red) at a point or set of points of contact. A world frame Fw with origin Ow is fixed in the plane, and a slider frame Fw with origin Fs is

attached to the center of friction of the slider S. The configuration (xw, yw, θw )
⊺ describes the position and orientation of the slider frame Fs relative to the world frame

Fw. Similarly, a pusher frame Fp with origin Op and its configuration is computed. On the right side of the figure, the relation between the unit motion vector

v = (vx , vy ,ω)
⊺ and the center of rotation of frame Fs is described by the projection shown from the unit motion sphere to the tangent planes (one for each rotation

sense). The line at the equator of the sphere represents translations. Reproduced from Lynch and Mason (1996).

the quasi-static assumption, the limit surface allows one to
convert the generalized force applied by a pusher at a contact
to the instantaneous generalized velocity of the pushed object.
Alexander and Maddocks (1993) considered the case when
only the geometric extent of the support area is known, and
described techniques to bound the possible motions of the
pushed object. While the limit surface provides a powerful tool
for determining the motion of a pushed object, there exists no
convenient explicit form to construct it. In response to this
challenge, Lee and Cutkosky (1991) proposed to approximate
the limit surface as an ellipsoid to improve computational
time. However, their approximation requires knowledge of
the pressure distribution. Marking a milestone of planar
pushing research, Lynch et al. (1992) applied the ellipsoidal
approximation to derive a closed-form analytical solution for
the kinematics of quasi-static single-point pushing, including
both sticking and sliding behaviors. Subsequently, Howe and
Cutkosky (1996) explored further methods for approximating
limit surfaces, including guidance for selecting the appropriate
approach based on the pressure distribution, computational cost,
and accuracy.

Results on the mechanics of planar pushing have been used
for planning and control of manipulator pushing operations.
To begin with, Mason (1990) showed how to synthesize robot
pushing motions to slide a block along a wall, a problem later
also studied by Mayeda and Wakatsuki (1991). Akella and
Mason (1992, 1998) analyzed the series of pushes needed to
bring a convex polygon to a desired configuration. Narasimhan
(1994) and Kurisu and Yoshikawa (1995) studied the problem

of moving an object among obstacles by pushing with point
contact. Lynch and Mason (1996) comprehensively studied
stable pushing of a planar object with a fence-shaped finger,
considering mechanics, control, and planning. First, they derived
conditions for stable edge pushing, considering the case where
the object will remain attached to the pusher without slipping
or breaking contact. Based on this result, they then used best-
first search to find a path to a specified goal location. Figure 3
shows the proposed representation of motions by Lynch and
Mason (1996). Agarwal et al. (1997) proposed an algorithm
for computing a contact-preserving push plan for a point-
sized pusher and a disk-shaped object. Nieuwenhuisen et al.
(2005) utilized compliance of manipulated disk-shaped objects
against walls to guide their motion. They presented an exact
planning algorithm for 2D environments consisting of non-
intersecting line segments. Subsequently, de Berg and Gerrits
(2010) improved this approach from a computational perspective
and presented push-planning methods both for the contact-
preserving case and less restrictive scenarios. Miyazawa et al.
(2005) used a rapidly-exploring random tree (RRT) (LaValle,
1998) for planning non-prehensile manipulation, including
pushing, of a polyhedron with three degrees of freedom (DOF)
by a robot with spherical fingers. They do not allow for
sliding and rolling of robot fingers on the object surface.
Cappelleri et al. (2006) have solved a millimeter scale 2D
version of the peg in the hole problem, using Mason’s models
for quasi-static manipulation and an RRT-based approach for
planning a sequence of pushes. Figure 4 presents a graphical
representation of planar motions and Coulomb’s frictional
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FIGURE 4 | (Left) Planar pushing system with world frame Fw (with origin Ow ) and a slider S (blue) with frame Fw as described in Figure 3. The pusher P (red) is

interacting with the slider on one point of contact. It impresses a normal force fn, a tangential friction force ft, and a torque τ about the center of mass. The normal

force fn is in the direction of the normal vector n of the contact point between pusher and slider, and α = arctanµp is the angle of the friction cone assuming µp as the

coefficient of friction. The terms px and py describe, respectively, the normal and the tangential distance between the pusher P and the center of friction of the slider S.

(Right) Coulomb’s frictional law for the planar pushing system on the left-hand figure. Coulomb’s law states that the normal and tangential forces are related by

ft = µpfn. Three contact modes are defined. (1) Sliding right in which friction acts as a force constraint; (2) Sticking in which friction acts as a kinematic constraint; and

(3) Sliding left in which friction acts as a force constraint. Reproduced from Bauza et al. (2018).

law that governs such systems (see the figure caption for
further details).

More recently, Dogar and Srinivasa (2011) employed the
ellipsoidal approximation of the limit surface to plan robust
push-grasp actions for dexterous hands and used them for
rearrangement tasks in clutter. To use results for planar pushing,
they assumed that objects do not topple easily. Furthermore,
they assumed that the robot has access to 3D models of the
objects involved. Cosgun et al. (2011) presented an algorithm for
placing objects on cluttered table surfaces, thereby constructing
a sequence of manipulation actions to create space for the
object. However, focusing on planning, in their 2D manipulation
they simply push objects at their center of mass in the
desired direction. Lee et al. (2015) presented a three-stage
hierarchical approach to planning sequences of non-prehensile
and prehensile actions. First, they find a sequence of qualitative
contact states of the moving object with other objects, then a
feasible sequence of poses for the object, and lastly a sequence
of contact points for the manipulators on the object.

In summary, although of fundamental importance for
understanding themechanisms of pushing, analytical approaches
are limited by their own inherent complexity. The assumptions
around which they are built do not hold in real applications,
e.g., a robot link in contact with an object does not produce
a single-point contact or the frictional forces are not constant
over a supporting surface. Proofs of concept for demonstrating
the validity and stability of such methods are generally confined
to carefully chosen testing scenarios or special applications,
e.g., the frictionless millimeter scale peg-in-the-hole scenario
in Cappelleri et al. (2006). Extensions to non-convex or novel-
shaped objects challenge analytical approaches. Yet, controllers
and planners can easily be synthesized for specified objects
and environments. Due to the deterministic nature of the

models, they do not implicitly account for uncertainty in the
state description or the predictions. Nonetheless, an analytical
method can be employed as a black box to forward-simulate
the effect of a given action within a planner. For instance,
King (2016) developed a series of push planners for open-loop
non-prehensile rearrangement tasks in cluttered environments.
Before considering more complex scenarios, they used a simple
analytical approach for forward-simulation of randomly sampled
time-discrete controls within an RRT-based planner. They tested
their planners on two real robotic platforms, the home care robot
HERB with a seven DOF arm, and the NASA rover K-Rex.

3.1.2. Complementing Analytical Approaches With

Data-Driven Methods (Hybrid)
Transitioning to the second phase of planar pushing research,
multiple factors have contributed a shift toward more data-
driven approaches. For one thing, much of the previous work
makes minimal assumptions regarding the pressure distribution.
While convenient, those methods lead to conservative strategies
for planning and control, providing only worst case guarantees.
Furthermore, while assumptions regarding the pressure
distribution in previous work were often minimal, other
strong assumptions were frequently made to derive results
analytically. Hence, more recent work has set out to validate
common assumptions such as the ubiquitous quasi-static
assumption. Additionally, purely analytical models do not take
into account the stochastic nature of pushing in the sense that
pushes indistinguishable to sensor and actuator resolution have
empirically been found to produce variable results (Yu et al.,
2016). Instead of making minimal or strong assumptions about
parameters, they can instead be estimated based on observations.
Several researchers have explored this approach to deal with
the inherent uncertainties of this problem (section 1). Figure 5
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FIGURE 5 | A classical workflow for estimating relevant physical parameters of a pushed object. A robotic pusher performs a set of push operation on an object

which is typically tracked using vision. Simpler approach employs markers on the object for more accurate estimations. An analytical model of the motion for the

target object is also employed. Sensory data and physical principles are the inputs of the estimator. As output, the estimator provides with an estimate of the desired

parameters, e.g., friction distribution or center of mass. In Lynch (1993) the estimated parameters are also used for recognizing objects based on their (estimated)

physical properties.

summarizes a classical workflow for estimating relevant physical
parameters of a pushed object.

Lynch (1993) presented methods both for estimating the
relevant friction parameters by performing experimental pushes,
and for recognizing objects based on their friction parameters.
Similarly, Yoshikawa and Kurisu (1991) described how a
mobile robot with a visual sensor can estimate the friction
distribution of an object and the position of the center of
friction by pushing and observing the result. Yet, both of these
approaches discretise the contact patch into grids so that they
are either imprecise if the approximation is too coarse or suffer
from the curse of dimensionality when using a fine-grained
approximation. Ruiz-Ugalde et al. (2010, 2011) formulated a
compact mathematical model of planar pushing. Assuming that
the object’s base shape is given, their robot explored object-
table and finger-object friction coefficient parameters. Zhou
et al. (2016) developed a method for modeling planar friction,
proposing a framework for representing planar sliding force-
motion models using convex polynomials. Notably, they also
showed that the ellipsoid approximation is a less accurate
special case of this representation. Zhou et al. (2017) extended
the convex polynomial model to associate a commanded
position-controlled end effector motion to the instantaneous
resultant object motion. They modeled the probabilistic nature
of object-to-surface friction by sampling parameters from a
set of distributions. They presented the motion equations
for both single and multiple frictional contacts and validated
their results with robotic pushing and grasping experiments
on the dataset published by Yu et al. (2016). That dataset
comprises planar pushing interactions with more than a million
samples of positions of pusher and slider, as well as interaction
forces. Push interaction is varied along six dimensions, namely
surface material, shape of the pushed object, contact position,
pushing direction, pushing speed, and pushing acceleration.
Using their dataset, they characterized the variability of friction,
and evaluated themost common assumptions and simplifications

made by previous models of frictional pushing. They provide an
insightful table that lists the assumptions and approximations
made in much of the work cited in this section. More recently,
Bauza et al. (2019) have published Omnipush, an extensive
dataset of planar pushing behavior that extends their previous
work. It comprises 250 pushes for each of 250 objects. The
pushing velocity is constant and chosen so that the interaction
is close to quasi-static. They improved on their previous dataset
by providing RGB-D sensor data in addition to tracking data,
increasing object diversity, adding controlled variation of the
objects mass distribution, and creating benchmarks to evaluate
models. Finally, Bauza and Rodriguez (2017) used a data-driven
approach to model planar pushing interaction to predict both
the most likely outcome of a push and, as a novelty, its expected
variability. The learned models, also trained on the dataset by
Yu et al. (2016), rely on a variation of Gaussian processes whilst
avoiding and evaluating the quasi-static assumption by making
the velocity of the pusher an input to the model. However, the
learned models are specific to the particular object and material.
Transfer learning is left for future work.

3.2. Physics Engines and Dynamic Analysis
While the quasi-static assumption may be reasonable in a variety
of situations, other problems call for dynamic models of pushing.
One popular approach to achieving this is using a physics engine.
Before covering this field, we first consider work concerned with
dynamic pushing that does not recur to physics engines.

3.2.1. Dynamic Analysis
Using dynamic analysis, Brost (1992) investigated the problem
of catching an object by pushing it, i.e., determining the pushing
motions that lead to a pusher-object equilibrium. This work was
motivated by dealing with uncertainty in positioning, generating
plans that work also in the worst case. Jia and Erdmann (1999)
investigated dynamic pushing assuming frictionless interaction
between pusher and object. Behrens (2013) instead studied
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dynamic pushing but assumed infinite friction between pusher
and object. Chavan-Dafle and Rodriguez (2015) considered
planning non-prehensile in-hand manipulation with patch
contacts. They described the quasi-dynamic motion of an object
held by a set of frictional contacts when subject to forces exerted
by the environment. Given a grasp configuration, gripping
forces, and the location and motion of a pusher, they estimate
both the instantaneous motion of the object and the minimum
force required to push the object into the grasp. To this end,
complex contact geometries are broken up into rigid networks
of point contacts. More recently, Woodruff and Lynch (2017)
extended earlier work by Lynch and Mason (1999) on dynamic
manipulation primitives, including pushing, by proposing a
method for motion planning and feedback control of hybrid,
dynamic, and non-prehensile manipulation tasks.

3.2.2. Physics Engines
A large body of work related to pushing makes use of physics
engines. Commonly used examples of such engines include Bullet
Physics, the Dynamic Animation and Robotics Toolkit (DART),
MuJoCo, the Open Dynamics Engine (ODE), NVIDIA PhysX,
and Havok (Erez et al., 2015). Those engines allow for 3D
simulation but 2D physics engines exist, as well, e.g., Box2D.
While some physics engines have been designed for graphics
and animation, others have been developed specifically for
robotics. In the first category, visually-plausible simulations are
key while physically-accurate simulations are essential for many
robotics applications. Most physics engines today use impulse-
based velocity-stepping methods to simulate contact dynamics.
As this requires solving NP-hard problems at each simulation
step, more tractable convex approximations have been developed,
highlighting the trade-off between computational complexity
and accuracy present in those engines (Erez et al., 2015). 3D
physics engines use a Cartesian representation where each body
has six DOF and joints are modeled as equality constraints in
the joint configuration space of the bodies. In robotics, where
joint constraints are ubiquitous, using generalized coordinates
is computationally less expensive and prevents joint constraints
from being violated.

For a comparison of physics engines, we refer the reader to two
recent studies (Erez et al., 2015; Chung and Pollard, 2016). Erez
et al. (2015) compared ODE, Bullet, PhysX, Havok, and MuJoCo.
It should be noted that the study was written by the developers
ofMuJoCo. They introduced quantitative measures of simulation
performance and focused their evaluation on challenges common
in robotics. They concluded that each engine performs best
on the type of system it was tailored to. For robotics, this is
MuJoCo while gaming engines shine in gaming-related trials,
whereby no engine emerges as a clear winner. Chung and Pollard
(2016) compared Bullet, DART, MuJoCo, and ODE with regard
to contact simulations whilst focusing on the predictability of
behavior. Their main result is that the surveyed engines are
sensitive to small changes in initial conditions, emphasizing that
parameter tuning is important. Another evaluation of MuJoCo
was carried out by Kolbert et al. (2017) who evaluated the contact
model of MuJoCo with regard to predicting the motions and
forces involved in three in-hand robotic manipulation primitives,

among them pushing. In the course, they also evaluated the
contact model proposed by Chavan-Dafle and Rodriguez (2015).
They found that both models make useful yet not highly
accurate predictions. Concerning MuJoCo, they state that its soft
constraints increase efficiency but limit accuracy, especially in the
cases of rigid contacts and transitions in sticking and slipping
at contacts.

Researchers have applied physics engines in multifarious ways
to study robotic pushing. To begin with, physics engines have
been used in RRT-based planners to forward-simulate pushes.
Zito et al. (2012) presented a two-level planner that combines a
global RRT planner operating in the configuration space of the
object, and a local planner that generates sequences of actions
in the robot’s joint space that will move the object between a
pair of nodes in the RRT. In this work, the experimental set-up
consists of a simulated model of a tabletop robot manipulator
with a single rigid spherical fingertip which it uses to push
a polyflap (Sloman, 2006) to a goal state. To achieve this,
the randomized local planner utilizes a physics engine (PhysX)
to predict the object’s pose after a pushing action. Erroneous
estimates and uncertainty in the motion is not directly taken
into account by the planner. Hence, a re-planning stage is
required when the actual motion differs from the prediction by
more than a user-defined threshold. Figure 6 shows a sequence
of actions planned by the two-level planner for pushing a
polyflap to a desired configuration (see caption for further
details). Similarly, King (2016) incorporated a dynamic physics
engine (Box2D) into an RRT-based planner to model dynamic
motions such as a ball rolling. To reduce planning complexity,
they considered only dynamic actions that lead to statically
stable states, i.e., all considered objects need to come to rest
before the next action. Another application of physics engines
in robotic pushing was proposed by Scholz et al. (2014). In
what they refer to as Physics-Based Reinforcement Learning, an
agent uses a physics engine as a model representation. Hence,
a physics engine can be seen as a hypothesis space for rigid-
body dynamics. They introduced uncertainty using distributions
over the engine’s physical parameters and obtained transitions
by taking the expectation of the simulator’s output over those
random variables. Finally, Zhu et al. (2017) utilized a physics
engine for motion prediction, learning the physical parameters
through black-box Bayesian optimization. First, a robot performs
random pushing actions on an object in a tabletop set-up. Based
on those observations, the Bayesian learning algorithm tries
to identify the model parameters that maximize the similarity
between the simulated and observed outcomes. To support
working with different objects, a pre-trained object detector is
used that maps observed objects to a library of 3D meshes and
estimates the objects’ poses on that basis. Once the physical
parameters have been identified, they are used to simulate the
results of new actions.

Finally, while physics engines and dynamic analysis offer great
value for robotic applications, e.g., by taking into consideration
dynamic interaction and 3D objects, they nevertheless require
explicit object modeling and extensive parameter tuning.
Another approach, which we consider next, is to learn how to
predict object motions from data.
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FIGURE 6 | Simulation of a Katana robot arm equipped with a spherical finger that plans a sequence of pushes to move an L-shaped object, called polyflap (Sloman,

2006) to a goal state. The plan is created by using a physics engine (PhysX) to predict the outcome of a push operation. Image 01 shows the initial pose. The

wire-framed L-shaped polyflap is a “phantom” to indicate the desired goal state. The goal pose is translated from the initial pose by 28 cm and rotated by 90◦. Image

02 shows the collision-free trajectory to bring the end effector to the start pose of the first push. Images 01–04 show the first push which makes the polyflap tip over.

Images 05–09 show a series of pushes which culminate in the polyflap resting in an unstable equilibrium pose along its folded edge. Images 12 and 13 show a

sideways push. Images 14 and 15 show the final frontal push which aligns the polyflap with the target configuration. Courtesy of Zito et al. (2012).

4. LEARNING TO PREDICT FROM
EXAMPLES

This part of the literature is based on learning predictive
models for robotic pushing from data. We first review work
on qualitative models and then consider models that make
metrically precise predictions. In both of those sections, we
do not include work that uses deep learning techniques. We
dedicate a separate section to such approaches, given the current
research interest in that area and the large number of papers
being published.

4.1. Qualitative Models
Much work on qualitative models revolves around the concept of
affordances. The term affordance was invented by Gibson (1979)
and generally refers to an action possibility that an object or
environment provides to an organism. Although it has originated
from psychology, the concept has been influential in various
domains, among them robotics. Sahin et al. (2007) discussed
affordances from a theoretical perspective while laying emphasis
on their use in autonomous robotics. Min et al. (2016) provided
a recent survey of affordance research in developmental robotics.

Although the concept of affordances is typically associated
with learning “high-level” actions from contexts, e.g., pushing
an object in a clutter scene when grasping is not available, in
this paper we focus on investigations that extend affordances
to the effects of an action too. Ugur et al. (2011) considered
an anthropomorphic robot that learns object affordances as well
as effect categories through self-interaction and self-observation.
After learning an FM as a mapping between object affordances
and effects, the proposed method can make plans to achieve
desired goals, emulate end states of demonstrated actions, and
cope with uncertainty in the physical effects by monitoring
the plan execution and taking corrective actions using the
perceptual structures employed or discovered during learning.
While much previous work has focused on affordance models
for individual objects, Moldovan et al. (2012) learned affordance
models for configurations of multiple interacting objects with
push, tap, and grasp actions for achieving desired displacements
or rotations, as well as contacts between objects, for selecting
the appropriate object and action for the subsequent step. Their
model is capable of generalizing over objects and dealing with
uncertainty in the physical effects. Ridge et al. (2015) developed
a self-supervised online learning framework based on vector
quantization for acquiring models of effect classes and their
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FIGURE 7 | The sequence of operations adopted by Zrimec and Mowforth (1991) to construct their causality learning model. The robot learns by interacting with the

environment in an unsupervised fashion. The system can autonomously discover knowledge, as e.g., whether an action generates a push on an object. The

“motivation” module guarantees that the system is driven toward acquiring more knowledge about the robot/environment interaction. Reproduced from Zrimec and

Mowforth (1991).

associations with object features. Specifically, they considered
robots pushing household objects and observing them with a
camera. Limitations of such learning approaches are that they
do not tend to generalize well to novel objects and actions.
This is also due to a lack of interpretation and understanding
of novel contexts. In fact, self-interaction and self-observation
are mainly limited by the ability of the robot to discover
novel scenarios and learning opportunities by itself (see also
section 5.1).

Considering other qualitative approaches than those related
to affordances, Zrimec and Mowforth (1991) developed an
algorithm for knowledge extraction and representation to predict
the effects of pushing. In their experiment, a robot performs
random pushes and uses unsupervised learning on those
observations. Their method involves partitioning, constructive
induction and determination of dependencies (see Figure 7).
Hermans et al. (2013) developed a method for predicting contact
locations for pushing based on the global and local object shape.
In exploratory trials, a robot pushes different objects, recording
the objects’ local and global shape features at the pushing
contacts. For each observed trajectory, the robot computes a
push-stability or rotate-push score and maps shape features to
those scores by means of regression. Based on that mapping, the
robot can search objects of novel shape for features associated
with effective pushes. Experimental results are reported for

a mobile manipulator robot pushing household objects in a
tabletop set-up.

While learned affordances, and other qualitative models, can
be useful in various scenarios, other applications require the
ability to predict the effects of pushing more precisely, e.g., by
explicitly predicting six DOF rigid body motions. We consider
efforts made to achieve precise predictions in the next section.

4.2. Metrically Precise Models
Early seminal work by Salganicoff et al. (1993) presented a vision-
based unsupervised learning method for robot manipulation. A
robot pushes an object at a rotational point contact and learns an
FM of the action effects in image space. Subsequently, they used
the FM for stochastic action selection in manipulation planning
and control. The scenarios considered in this work are relatively
simple in that the pusher remains within the friction cone of the
object and the contact only has one rotational DOF. Yet, this
work takes an approach that is markedly different from analytical
models discussed before. Instead of estimating parameters such
as frictional coefficients explicitly, the authors encode that
information implicitly in the mapping between actions and their
effects in image space. Similarly, Walker and Salisbury (2008)
learned a mapping between pushes and object motion as an
alternative to explicitly modeling support friction. Set in a 2D
tabletop environment, a robot with a single finger pushes objects
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FIGURE 8 | The example shows the interaction between a 5-axis Katana

robotic manipulator and an L-shape object, called polyflap (Sloman, 2006). A

set of contact experts are learned as probability densities for encoding

geometric relations between parts of objects under a push operation. This

approach allows these experts to learn from demonstration physical

properties, such as non-penetration between an object and a table top,

without explicitly representing physics knowledge in the model. The green wire

frame denotes the prediction whilst the red wire frame denotes the visual

tracking. Courtesy of Kopicki et al. (2011).

and uses an online, memory-based local regression model to
learn manipulation maps. To achieve this, they explicitly detect
the object’s shape using a proximity sensor and fit a shape to
the thus obtained point cloud. A method for handling objects
with more complex shapes was proposed by Lau et al. (2011). In
their work, a robot, while being of simple circular shape itself,
aims to deliver irregularly shaped flat objects to a goal position
by pushing them. The objects that they consider are chosen
to exhibit quasi-static properties. Collecting several hundred
random example pushes as training data, an FM is learned using
non-parametric regression, similar to the approach taken by
Walker and Salisbury (2008). Also tackling the problem of object
delivery, Krivic and Piater (2019) proposed a modular method
for pushing objects in cluttered and dynamic environments
that can work with unknown objects without prior experience.
Drawing on their previous work (Krivic et al., 2016; Krivic and
Piater, 2018), the authors’ approach comprises a space-reasoning
module, a strategy module, and an adaptive pushing controller
which learns local IMs of robot-object interaction online. While
their approach shows a high success rate of object delivery for
objects with quasi-static properties in simulated and real-world
environments, it does not take into account object orientation
and depends on vision-basedmeasurements of the object motion.

Kopicki et al. (2011) presented two data-driven probabilistic
methods for predicting 3D motion of rigid bodies interacting
under the quasi-static assumption. First, they formulated the
problem as regression and subsequently as density estimation.
Figure 8 shows an example of the interaction between a 5-axis
Katana robotic manipulator and a polyflap (Sloman, 2006). In
Kopicki et al. (2017) they extended this work further. Their

architecture is modular in that multiple object- and context-
specific FMs are learned which represent different constraints
on the object’s motion. A product of experts is used which,
contrary to mixture models, does not add but multiply different
densities. Hence, all constraints, e.g., those imposed by the robot-
object contact and multiple object-environment contacts, need
to be satisfied so that a resulting object motion is considered
probable. This formulation facilitates the transfer of learned
motion models to objects of novel shape and to novel actions.
In experiments with a robot arm, the method is compared with
and found to outperform the physics engine PhysX tuned on
the same data. For learning and prediction, their algorithms
require access to a point cloud of the object. A further extension
of this approach is presented in Stüber et al. (2018). In this
work, the authors aim to contribute to endowing robots with
versatile non-prehensile manipulation skills. To that end, an
efficient data-driven approach to transfer learning for robotic
push manipulation is proposed. This approach combines and
extends two separate strings of research, one directly concerning
pushing manipulation (Kopicki et al., 2017), and one originating
from grasping research (Kopicki et al., 2016). The key idea
is to learn motion models for robotic pushing that encode
knowledge specific to a given type of contact, see the work
by Kopicki et al. (2016) for further details. Figure 9 presents a
graphical representation of the feature-based predictors as well
as resulting predictions across object shapes. In an previously
unseen situation, when the robot needs to push a novel object,
the system first establishes how to create a contact with the
object’s surface. Such a contact is selected among the learned
models, e.g., a flat contact with a cube side or a contact with
a cylindrical surface. At the generated contact, the system then
applies the appropriate motion model for prediction, similarly
to that of Kopicki et al. (2017). The underlying rationale for
this approach to prediction is that predicting on familiar ground
reduces the motion models’ sample complexity while using local
contact information for prediction increases their transferability
(Krivic et al., 2016).

Meriçli et al. (2015) similarly presented a case-based approach
to push-manipulation prediction and planning. Based on
experience from self-exploration or demonstration, a robot
learns multiple discrete probabilistic FMs for pushing complex
3D objects on caster wheels with a mobile base in cluttered
environments. Subsequently, the case models are used for
synthesizing a controller and planning pushes to navigate an
object to a goal state whilst potentially pushing movable obstacles
out of the way. In the process, the robot continues to observe the
results of its actions and feeds that data back into the case models,
allowing them to improve and adapt.

Metrically precise models have become a stable trend of
research in the field of robotic push manipulation. Their
probabilistic nature elegantly deals with state and motion
uncertainties. Nonetheless, real applications of robot pushing
may require higher levels of reasoning to be useful assistants.
For example, a warehouse robot may need to fill shelves with
many boxes via push operations. This would also require
planning multiple sequences of actions where some earlier
placements may lead to a sub-optimal final configuration.
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FIGURE 9 | (Top) graphical representation of the feature-based predictors for push operations. The global motion of the object after a push is described by the rigid

body transformation mb. This transformation is unknown to the robot. However, the robot can estimate it by learning a set of local predictors for the motions m
υL and

m
υ
E
k
, for k = 1, . . . ,NE . The rigid body transformations hL and hEk describe the estimated contacts on the object’s surface w.r.t. the estimated global frame of the

object, b. Since the object is assumed to be rigid, this relation does not change over time, thus once the local motions m
υL and m

υ
E
k
are estimated, bt+1 can be

estimated by using the relations hL and hEk . (Bottom) resulting predictions. initial object pose (green, in contact with robot), true final object pose (green, displaced),

and predictions (blue). Courtesy of Stüber et al. (2018).

Efficient planning solutions would need to reason about
gathering critical information concerning the task space or
propagating the uncertainty in the action’s effects to future states.
We present some suggestions on how to deal with these types of
problems in the final remarks (see sections 5.2 and 5.3).

4.3. Deep Learning Approaches
Deep learning commonly refers to methods that employ artificial
neural networks to learn models from data. It has been used
in robotic pushing to estimate physical parameters, predict the
outcome of pushing actions, and for planning and control.
Previously, we have seen work concerned with estimating
physical parameters of the environment from data. Deep learning
has been used to address the same problem. Denil et al. (2016)
studied the learning of physical properties such as mass and
cohesion of objects in a simulated environment. Using deep
reinforcement learning, their robots learn different strategies that

balance the cost of gathering information against the cost of
inaccurate estimation.

Instead of explicitly estimating physical parameters, another
approach is learning a dynamics model. Several studies have
investigated learning general physical models or “physical
intuition” directly from image data. Chang et al. (2016)
presented the Neural Physics Engine, a deep learning framework
for learning simple physics simulators. They factorize the
environment into object-based representations and decompose
dynamics into pairwise interaction between objects. However,
their evaluation is limited to simple rigid body dynamics in
2D. Li et al. (2018) proposed Push-net, a deep recurrent neural
network to tackle the problem of quasi-static planar pushing
to re-orient and re-position objects. Their approach requires
only visual camera images as input and remembers pushing
interactions using a long short-term memory (LSTM) module.
An auxiliary objective function estimates the COM of the object,
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FIGURE 10 | Frame-centric model for motion prediction of billiard balls. The model takes as input the 2D image of the billiard and the forces applied by the agent to

make predictions about the future configurations of the balls. Reproduced from Fragkiadaki et al. (2015).

FIGURE 11 | Object-centric model for motion prediction of billiard balls. The system predicts the future configurations of the balls by individually modeling the

temporal evolution of each ball. In this scenario, predicting the velocities of each ball is sufficient for computing the next configuration of the billiard. Reproduced

from Fragkiadaki et al. (2015).

thus encoding physics into their model. They trained their model
in simulation and tested it on various objects in simulation
and on two real robots, with results indicating that Push-Net is
capable of generalizing to novel objects.

Watters et al. (2017) introduced the Visual Interaction
Network, a model for learning the dynamics of a physical
system from raw visual observations. First, a convolutional neural
network (CNN) generates a factored object representation from
visual input. Then, a dynamics predictor based on interaction
networks computes predicted trajectories of arbitrary length.
They report accurate predictions of trajectories for several
hundred time steps using only six input video frames. Yet, their
experiments are also limited to rather simple environments,
namely 2D simulations of colored objects on natural-image
backgrounds. Similarly, Fragkiadaki et al. (2015) also used
an object-centric formulation based on raw visual input for
dynamics prediction. Based on object-centric visual glimpses
(snippets of an image), the system predicts future states
by individually modeling the behavior of each object. A

graphical representation of this model is presented in Figure 10.
After training in different environments by means of random
interaction, they also use their model for planning actions
in novel environments, in this case moving balls on a 2D
table (Figure 11). Ehrhardt et al. (2017) constructed a neural
network for end-to-end prediction of mechanical phenomena.
Their architecture consists of three components: a CNN extracts
features from images which are updated by a propagation
module, and decoded by an estimation module. What their
network outputs is a distribution over outcomes, thus explicitly
modeling the inherent uncertainty in manipulation prediction.
In terms of experiments, they study the relatively simple problem
of a small object sliding down an inclined plane.

Moving toward more complex scenarios, Byravan and Fox
(2017) introduced SE3-NETS, a deep neural network architecture
for predicting 3D rigid body motions. Instead of RGB images,
their network takes depth images as input, together with
continuous action vectors, and associations between points
in subsequent images. SE3-NETS segment point clouds into
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object parts and predict their motion in the form of SE(3)
transformations. They report that their method outperforms
flow-based networks on simulated depth data of a tabletop
manipulation scenario. Furthermore, they demonstrate that it
performs well on real depth images of a Baxter robot pushing
objects. However, their approach requires that associations
between depth points are provided. They aim to learn those
automatically in future work and to apply SE3-NETS to non-
rigid body motion, recurrent prediction, and control tasks. A
different approach to learning dynamics from images was taken
by Agrawal et al. (2016). They jointly learn FMs and IMs of
dynamics of robotic arm operation that can be used for poking
objects. In doing so, they extract features from raw images and
make predictions in that feature space. In real-world experiments
with Baxter, their model is used to move objects to target
locations by poking. In order to cope with the real world, their
model requires training on large amounts of data. By poking
different objects for over 400 h, their robot observed more than
100, 000 actions.

Most of the studies presented this section make use of object-
centric representations to model dynamics. Other approaches
predict motion without such representations. For instance, Finn
et al. (2016) developed an action-conditioned video prediction
system which predicts a distribution over pixel motions only
based on previous frames. No information concerning object
appearance is provided to the model. It borrows that information
from previous frames and merges it with model predictions. It is
this mechanism that allows the model to generalize to previously
unseen objects. By conditioning predictions on an action, the
model can effectively imagine the action’s consequences. As with
previously presented deep learning models, this approach also
requires large amounts of data to perform well in real-world
situations. Hence, the authors have collected a dataset of 59, 000
robot pushing motions (frames associated with the action being
applied) on different objects. While their results demonstrate that
no object-centric representation is required for prediction, the
authors argue that such representations are a promising direction
for research as they provide concise state representations for use
in reinforcement learning.

We have seen how artificial neural networks can be used to
model the dynamics of physical systems. In addition to that, deep
reinforcement learning has been used to learn control policies in
the field of robotic pushing. Many of those approaches make use
of dynamics models so that they can be seen as complementary
to the work presented before. We do not provide a detailed
review of this very active field here and refer the reader to Levine
et al. (2015), Levine et al. (2016), Finn and Levine (2017), and
Ghadirzadeh et al. (2017) for overviews of such work.

5. FINAL REMARKS

In this paper we have provided an overview of the problem of
robot pushing and summarized the development of the state-
of-the-art, focusing on the problem of motion prediction of
the object to be pushed. We have also covered some aspects of
relevant applications of pushing for planning and control.

Typical approaches have been classified as (i) purely analytical,
(ii) hybrid, (iii) dynamic analysis, (iv) physics engines based, (v)

data-driven, and (vi) deep learning. Representative work for each
of these categories has been listed for readers to have a general
overview of the field and its state-of-the-art from the earlier work
in the 1980s to the most recent approaches.

A set of assumptions in the proposed methods have
been highlighted. Earlier work has mostly investigated motion
prediction with the quasi-static assumption to get rid of complex
dynamics and provided the groundwork to understand the
mechanics for pushing 2D shapes. This seminal work has been
extended to more realistic scenarios involving 3D objects to
be pushed. Nonetheless, as we have seen there are two types
of uncertainty that affect manipulation problems: (i) prediction
uncertainty and (ii) state uncertainty. Unfortunately, purely
analytical approaches are computationally tractable only under
the assumption that the geometrical properties of the object to
be pushed are known a priori and the dynamics are negligible
(e.g., Mason, 1990; Mayeda and Wakatsuki, 1991). Key physical
properties that would affect the prediction, e.g., mass distribution
or friction coefficients, were typically assumed to be known or
possible to estimate on the fly, as in Yoshikawa andKurisu (1991),
by combining data-drivenmethods with the analytical mechanics
of pushing.

More recently, a few efforts were made toward robot pushers
that can also deal with state uncertainty. By relaxing the
assumption that the model of the object to be pushed is
known, the robot typically perceives the object as a point cloud
or RGB image to estimate the geometric properties, such as
pose and shape, before even attempting a motion prediction,
see Fragkiadaki et al. (2015) and Stüber et al. (2018).

Two strands of approaches can be identified: data-driven
and deep learning techniques. They are similar in that they
both define (or extract) some informative features as a basis for
learning and model predictions in a probabilistic framework to
estimate an action’s most likely outcome given the information
available, e.g., an image of the scene or contact models.

Qualitative models have made use of the concept of
affordances for learning a mapping between object features and
candidate actions, which they then employ for planning. For
manipulation tasks, however, the planner also needs to learn
the relationship between actions and their effects by creating
a mapping from actions to observable end states and their
variability. End states can be represented as displacements after
a push operation or a set of contacts for a prehensile operation.
This enables us to synthesize controllers with multiple classes of
actions and their expected effects which are then employed for
planning. Affordances can be learned for 3D motions of a single
or multiple interacting objects, but they do not generalize well
to novel objects or actions. Erroneous predictions can be dealt
with at execution time by triggering a re-planning procedure.
In contrast to qualitative models, metrically precise models are
concerned with directly learning a mapping between observable
features (e.g., contacts or geometrical features) and their effects
in the context of manipulation. Factorizing robot-object and
object-environments contacts as (probabilistic) experts enables a
robot pusher to generalize predictions across object categories,
e.g., demonstrated by Kopicki et al. (2017). Physical properties
such as impenetrability can also be learned implicitly by the
experts and transferred to novel contexts. The quasi-static

Frontiers in Robotics and AI | www.frontiersin.org 14 February 2020 | Volume 7 | Article 837

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Stüber et al. Let’s Push Things Forward

assumption limits the model to predictions of object motion
in the next time-step, but roll-out predictions can be executed
to approximate continuous operations. A second, more recent
strand is the application of deep learning techniques to learning
a physical intuition of the mechanics of pushing from visual data,
see Fragkiadaki et al. (2015). Automatic feature extraction can be
used to estimate uncertain state information such as the COM
from raw data (e.g., RGB images), as well as to make predictions
on interaction dynamics. Controllers for specific robots can
also be learned directly by the models, but there is a lack of
evidence on whether these controllers could be transferred across
robot platforms, or how their performance would degrade when
dealing with novel objects or actions. Nevertheless, the main
disadvantage of these approaches is the amount of data required.
While Stüber et al. (2018) andMeriçli et al. (2015) can learn from
as little as a few hundred pushes, Push-net and the other deep
learning approaches require hundreds of times more data.

While some typical problems still require a better solution,
new challenges and requirements are emerging in the field. To
make pushing an essential motor primitive in practical robotics,
the challenges are either currently under investigation in research
group worldwide or need to be investigated in the future.
Following we list some suggested trends of open problems that
we have identified.

5.1. Understanding and Semantic
Representation
The scene is typically perceived as an RGB image or a point
cloud. However, for robot pushing, we need to be able to identify
pushable objects from static ones. Labeling can be done but it
is very expensive in terms of human labor. Converting from
source image data to geometrical shapes, and from geometrical
shape to semantic representation will be beneficial for the robot.
Once the robot can identify probable dynamic objects within a
semantic map of the environment it would be able to interact
with the environment prioritizing those objects and improving
its understanding.

5.2. Sensory Fusion and Feedback
Multiple sensor inputs are nowadays available for robotic system.
Instead of solely relying on vision, other sources of information
should be used to close the loop of the manipulation. Tactile,
proprioception, and visual feedback should be fused together
to enable the robot to perform complex manipulation and
recover from failures. Generative models, such recurrent neural
networks, can learn manipulative operations from multiple
sensory sources. This enables the robot to compensate formissing
or corrupted input data, as well as to predict the next sensory
state and the associated expected error with respect to the next
observed sensory state, which can then be used for implementing
adaptive behaviors. For readers interested in sensory fusion for
manipulative tasks, we refer to the work of Yang et al. (2016) as
an interesting starting point.

5.3. Explicitly Modeling Uncertainty in the
Model
Due to a lack of perfect perception abilities, it is not unusual
that robots have to operate with an incomplete description

of their environment. In robot pushing, but more generally
in the problem of manipulation, the robot needs to generate
a set of contacts to interact with other objects. When the
pose of the object to be manipulated is unknown, what is
the best way to create a robust set of contacts? In the
case of planning for dexterous manipulation, our previous
work in Zito et al. (2013) has demonstrated that approaching
directions that maximize the likelihood of gathering (tactile)
information are more likely to achieve a successful set of
contacts for a grasp. This was tested in the case when, due
to imperfect perception abilities, the pose of the object to
be grasped remained uncertain. This empirically suggests that
reasoning about the uncertainty leads to more robust reach-
to-grasp trajectories with respect to object-pose uncertainty.
Similarly, selecting an action for physical effects (e.g., pushing,
push, and grasp) should benefit from incorporating state
uncertainty with respect to the initial pose estimate of the
object. Finally, we highlight the complexity of incorporating
uncertainty in models for pushing which results from the
multi-modal stochasticity inherent to the task demonstrated
by Yu et al. (2016).

5.4. Cooperative Robots and Multiple
Contacts Pushing
Moving large-scale objects is a common problem in warehouses
that can be achieved with cooperative robots. Besides the problem
of sharing information between them and coordinating the
efforts, a new challenge arises from the manipulation point of
view. Multiple contacts pushing is hard to predict, especially
when the actions are carried by multiple agents. Scholars
interested in the problem of multiple contacts pushing are
referred to the works of Lynch (1992) and Erdmann (1998) as
interesting starting points.

5.5. Real-World Applications
Although the theory behindmotion prediction is well-established
and applications to simple, structured scenarios have been made,
the combination of the existing methods with any industrial
applications has not yet been achieved. Robots in warehouses
can navigate freely and deliver goods, however, no robotic
system is capable of exploiting pushing operations for novel
items in novel situations, such as inserting a box of varied
produce onto an over-the-head store shelf. Theoretical solutions
are rarely reliable in practical engineering applications, hence
many sophisticated practical approaches will be needed in the
future. Very recently, the robotics community has realized that
one of the main issues that prevent a methodological and
stable advancement in the field is the lack of standardized
benchmarks and metrics for objective evaluations of different
approaches. Following the example of fields such as computer
vision and natural language process, large and diverse datasets
are required to provide the equivalent richness for physical
understanding and its application to robot manipulation
tasks. A recent attempt in this direction is presented in
Bauza et al. (2019).
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Dramatic cost savings, safety improvements and accelerated nuclear decommissioning

are all possible through the application of robotic solutions. Remotely-controlled systems

with modern sensing capabilities, actuators and cutting tools have the potential for

use in extremely hazardous environments, but operation in facilities used for handling

radioactive material presents complex challenges for electronic components. We present

a methodology and results obtained from testing in a radiation cell in which we

demonstrate the operation of a robotic arm controlled using modern electronics exposed

at 10 Gy/h to simulate radioactive conditions in the most hazardous nuclear waste

handling facilities.

Keywords: robot, manipulator, radiation, tolerance, gamma, waste, radioactive, exposure

1. INTRODUCTION

The nuclear industry in the UK and worldwide increasingly seeks cost-effective methods to
implement remote technologies to enable decommissioning of legacy waste treatment and handling
facilities to reduce residual hazard, a practice highly recommended by the International Atomic
Energy Agency (Iqbal et al., 2012). Whilst modern robots are in ubiquitous use in other industries,
such as manufacturing, significant uptake is yet to take place in the nuclear industry which would
benefit greatly from increased use of robotics, if implemented to carry out work too hazardous
or difficult for human workers. Remote operations are required in legacy nuclear facilities for the
purposes of inspection, characterization, cutting, dismantling, sorting, and segregating hazardous
waste prior to the demolition of buildings. Commonly-encountered hazards in legacy nuclear
facilities include aggressive chemical species, radioactive materials emitting alpha, beta or gamma
radiation, and asbestos. Often an understanding of the nature and distribution of these types
of hazards is required before decommissioning can take place, and so providing this improved
situational awareness, and the ability to carry out tasks remotely is where new robotic technology
can offer benefits to the industry.

A conservative regulatory framework and high safety standards make nuclear operators
conservative in their approach to adopting new technology, and so any new systems must have
their capabilities demonstrated and rigorously tested in a simulated environment prior to use.
Many facilities at the end of their useful life were built in the 1950s and 60s, based on simple but
effective technology.

The use of simple remote systems is not new to the industry, but uptake has been slow
and restricted: Houssay (2000) describes several systems already trialed, including for routine
monitoring and surveillance at Savannah River in the USA, and for cleaning of steam generators in
generating plant at Indian Point 2 as far back as 1989.
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Modern electronics enables more intelligent use of robotic
systems, but this comes with its own challenges. It has been
perceived by many in the industry that radiation will render
any modern electronic components immediately inoperable, and
so electronics have generally been avoided. Famously several
of the robots used to explore the Fukushima Daiichi stricken
reactor cores were subject to extremely high doses resulting in
their failure very quickly. Such extremes of radiation are not
common in the field of nuclear decommissioning, and so this
paper aims to challenge the received wisdom that radiation and
electronics do not mix. In the current work we demonstrate that
it is indeed possible to use electronic technology in radioactive
environments with successful outcomes. The notion that “no
electronic equipment can survive radiation” and so cannot be
used for any decommissioning task is not correct, and our
experiments using a high activity cobalt-60 radiation source have
shown that useful work can be done using sophisticated robots.

The radiation tolerance of many electronic components is of
course of the utmost importance for robotic functionality (Garg
et al., 2006). Often, researchers or manufacturers have attempted
to make their electronic devices more radiation tolerant by
altering the designs of integrated circuits, increasing the signal
amplitudes or by simple shielding (Ferlet-Cavrois, 2011). In some
instances however, the most cost effective solution for the use
of electronics in radioactive environments is to use standard
components, and plan for their replacement. Clearly, there are
instances in which replacement would not be possible (e.g.,
space exploration or long term insertion in a reprocessing tank),
yet by understanding the exposure environment posed by each
application and the required component longevity, it is possible
to develop appropriate solutions. Central to the assessment of
each application is knowledge of the radiation tolerance of each
component and also the system as a whole.

Many irradiation tests of electronic components examine
individual integrated circuits or chips (for example, the work
of Katz and Some, 2003; Nagatani et al., 2011; Ducros
et al., 2017), whereas our trial sought to test the whole
robotic arm, to better simulate what might happen in a real
industrial environment containing highly radioactive material.
A methodology is suggested for designing experiments to assess
the system performance of an industrial robot whilst the robot is
carrying out a dynamic task. In this way, it is possible to observe
the degradation of the robotic system during its operation, and
so the test provides a more meaningful assessment of operational
challenges, compared to a performance assessment carried out on
individual components or when the robot is stationary.

This is the very first work that assesses the system performance
of an off-the-shelf industrial robot arm. It was not clear to
the manufacturers whether the KUKA iiwa LBR800 would be
operable at all when exposed to the levels of radiation contained
within facilities handling Intermediate LevelWaste (ILW). In this
paper we describe an experiment to test the radiation tolerance
of a robotic arm as an exploratory test to determine the off-the-
shelf radiation tolerance of such a system, and to understandwhat
improvements might be carried out to increase its suitability for
decommissioning applications.

2. METHODOLOGY FOR PERFORMANCE
ASSESSMENT OF INDUSTRIAL ROBOTS

Robotic systems containing electronic components are likely to
suffer some form of damage causing altered functionality when
exposed to radiation, and the effect will be related to the exposure
dose. For many decommissioning tasks, the materials present
emitting radiation will not be well-defined, and so measurement
of the environmental dose rate may well be one of the robotic
inspection tasks.

The effect of radiation on components is material dependent,
and has been well-studied. Metal-oxide semiconductors (MOS)
have electronic properties altered (Ma and Dressendorfer,
1989), elastomer materials used in seals can become embrittled
(Wündrich, 1984), and optical components have been known
to change their transparency and refractive indices over time
(Brichard et al., 2001). Changes in the magnitude of measured
errors in motor control were observed by Howard et al. (2018).
Given enough radiation, these changes in mechanical, optical, or
electronic properties can ultimately cause failure in susceptible
components, potentially causing the robot to break down.

The impact of radiation on a robotic system can depend on
its operational state, and a “stationary” assessment method may
not demonstrate performance changes as an entire system. For
systems operated in dynamic motion it is critical to guarantee
the system performance of the whole robot (Aitken et al.,
2018; Tsitsimpelis et al., 2019) to enable the robot to complete
its tasks for a specific mission. Recently, different off-the-shelf
industrial robots have been proposed, for example the iiwa 14
LBR820 suggested by Aitken et al. (2018) and the prototype
systems funded by the UK Nuclear Decommissioning Authority
(2019). The deployment of off-the-shelf robots avoids the need
to design and manufacture special robotic arms for particular
requirements, speeding up deployment on nuclear sites but most
off-the-shelf industrial robots have not been tested in a radiation
environment. For compliance with strict regulatory controls and
to build safety case arguments, it is essential to qualify the system
performance of an industrial robot arm during exposure from
radioactive materials to reduce the risk of an accident.

This paper proposes a systematic methodology to assess
the performance of an industrial robot consisting of the
following steps:

1. Identification of the critical positions in the robotic arm
containing (often electronic) components potentially
susceptible to radiation exposure.

2. Planning the robot motion for specific applications
considering any safety and physical constraints.

3. Measurement of exposure dose rates at each critical position.
4. Data collection and performance monitoring of available

parameters and indicators during a repetitive motion of a
planned trajectory whilst exposed to radiation.

5. Following an observed performance degradation, assessment
of the point of failure using the “stationary” method.

Step 1. Due to high complexity of off-the-shelf industrial
robots, it is often very hard to establish analytical models of
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the systems which may be influenced by radiation (Howard
et al., 2018). However, it is possible to identify the components
which are least radiation tolerant and estimate their failure dose
through individual component irradiation testing. Typically, the
control processors and the sensor’s integrated circuits (ICs)
are considered as the least radiation-hardened components,
according to the results of stationary assessments (Katz and
Some, 2003; Nagatani et al., 2011; Ducros et al., 2017). It might
also be necessary to consider the degradation of other materials
such as elastomer polymers (for structural integrity; Wündrich,
1984) and optical fibers (for device-to-device communication;
Brichard et al., 2001).

Step 2. An industrial robot needs to be assessed in a radiation
environment at a required dose rate over a given exposure time
(Katz and Some, 2003; Nagatani et al., 2011; Ducros et al.,
2017; Tsitsimpelis et al., 2019). This is easy to achieve in typical
stationary assessments as individual electronic components can
be exposed to a constant dose rate. For a closer simulation of
real operation we recommend the use of a dynamic test, in which
the robot undertakes a repetitivemotion, providing firm evidence
about the failure mode to be encountered during real operation.
A comparison of operating parameters collected during each
cycle of repeating actions during periods of exposure and prior
to exposure can be used to show or predict changes in robot
performance. The trajectory of the robot must avoid obstacles in
the event of a malfunction, particularly with radioactive sources.

Step 3. In practice, exposure dose rates vary depending on the
proximity of each component of the robot to the radiation source,
and the differences can be dramatic. It is important to accurately
measure the dose rate at locations of interest, particularly the
less radiation-tolerant components, such that performance can
be correlated with exposure dose. The dose rate at each position
should be measured over multiple dynamic task-cycles, requiring
a real time radiometric instrument such as a diamond radiation
detector as described by Hutson (2018).

Step 4. All possible measurements related to the performance
of a robotic system should be recorded for later analysis of
degradation from radiation exposure. Howard et al. (2018)
recorded all the input and output signals of each sensing and
controlling component at a high sampling rate of 1.25 kHz,
during their test exposure using X-rays. However, such hardware
level signals are often difficult to access in industrial robots, but
it may be possible to observe at least the control errors from
robotic controllers.

A reference data set collected whilst moving in the planned
trajectory, but prior to any exposure is desirable to enable
analysis of any immediate effects radiation may have on a
robot’s operation.

Step 5. The last step for assessing the industrial robot is to
run a stationary performance of the robot to identify the total
radiation tolerance of the system at a configured dose rate until a
system failure occurs (as in Nagatani et al., 2011; Ducros et al.,
2017). As a result, the assessment step identifies the extreme
total dose-tolerance of the industrial robot and any specific
hardware/software issues limiting the overall system.

The proposed methodology has been used in the current
study for assessing the system performance of a KUKA iiwa 7

LBR800 robot arm positioned ∼1.60 m from a 20 TBq source of
cobalt-60 (60Co).

3. EXPERIMENTAL SET-UP

3.1. Robot Under Test
3.1.1. KUKA iiwa 7 LBR800 Robot

The KUKA iiwa 7 LBR800 robotic arm manufactured by KUKA
Deutschland GmbH (2019) has been proposed for several uses in
the nuclear industry, including decontamination of glove boxes.
It has 7 rotational joints providing 7 degrees of freedom, and has
a maximum payload of 7 kg with a 926 mm reach. The robot
is highly flexible, allowing it to easily avoid obstacles. Figure 1
shows the location of the robot’s joints. Within each joint, the
robot has three different types of sensor to enable measurements
of temperature, angular position, and force-torque. At each joint,
two encoders used for angular position measurements, to achieve
good positioning performance of its end-effector at milli-meter
level. The use of two encoders provides some redundancy which
could be used to detect sensor failure, and comparison of their
feedback is used for a robot control safety mechanism. Force-
torque sensors are used to detect any external forces applied to
the robot, making it “human-safe” for work in which humans
collaborate with the robot.

3.1.2. Identification of the Least Radiation Tolerate

Components

In each joint there are several electronic components such as
the integrated circuits of motor drives, encoders, and torque
sensors, which are all enclosed by an aluminum casing. These

FIGURE 1 | The KUKA iiwa 7 LBR800 robot used in radiation tolerance

testing. The left image shows the robot in its “zero” position status, with all the

robot joints at their initial zero positions. The positive directions of each joint

are indicated. The right-hand photo shows the robot during a mock-up test in

which a periodic trajectory was programmed. The red colored areas show

mounting locations used for the radiation detector.
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FIGURE 2 | (A) KUKA iiwa robotic arm in front of cobalt-60 source tubes (B).

FIGURE 3 | Beta decay of 6027Co is followed by emission of gamma at 1.17 and

1.33 MeV from 60
28Ni (Camp and Van Hise, 1976).

joint electronics constitute the locations of interest, and so dose
rate measurements were made as shown in Figure 1. The most
important of these was the “end-effector” responsible for carrying
tools, grippers, and sensing packages. The end-effector is also
likely to receive a higher dose than other components during
operations dealing with radioactive material.

3.1.3. Irradiation Test Source

The radiation tests were carried out at the Medical Research
Council (MRC) Harwell facility. As illustrated in Figure 2, the
radiation source was made up of four 60Co sources with a
combined activity of around 20 TBq. The 60Co sources produce
intense gamma radiation via a decay to 60Ni, as shown in the
decay scheme in Figure 3. The source can roughly be considered
a point source located at the position marked in Figure 2B.

During decay, beta particles produced were attenuated by the
source tube casings, leaving just gamma photons with energies
1.17 and 1.33 MeV. 60Co is used as a convenient radiation source
because it is present in nuclear waste and emits photons close
in energy to those emitted during the decay of 137Cs, the main
contributor to the gamma emitted by long-lived nuclear waste.
To expose the cell, the four 60Co sources were pushedwith teleflex

cables through containment tubes, passing into the cell via a lead
castle into four protruding exposure tubes. The sources could be
withdrawn at any time during the experiment.

3.2. Robot Trajectory Planning for Dynamic
Performance Test
The robotic arm was anchored in place attached to a heavy base
designed to stabilize the robot in the event of an unexpectedly
high momentum should the robot control fail catastrophically.
The robot was positioned so that all objects were out of reach as
shown in Figure 2.

The robot’s x-z plane was aligned with the sources and the
source-tubes were parallel to the robot’s y-axis (see the robot’s
original coordinates in Figure 1). The robot’s original position
was about 1.6 m from the center of the sources along its x-axis.

The robot is controlled to follow a defined trajectory,
simulating the robot executing a repetitive task. The continuous
motion of the robot arm is designed in a way to ensure each
of the motors is active at all times. Therefore, this evaluates
whether each joint could remain physically capable of moving
during exposure (see results in section 4). The robot’s end-
effector is considered the most important component of the
system, and has a target exposure of∼10 Gy/h. Ideally, the robot’s
end-effector would be controlled to follow an arc-trajectory
retaining a constant distance toward to the assumed point source.
Practically, this is not possible since very small changes in the
distance from end-effector to source result in noticeable changes
in dose rate. These changes were easily overcome using dosimetry
operated at a frequency of 20 Hz.

From the center of the point source, the flux of gamma
radiation decays as distance from the source increases following
the inverse-square law. The robot’s end-effector trajectory was
planned to follow an arc-trajectory of radius 1 m from the
assumed point source. The end-effector was moved along
the arc-trajectory at a speed of 20 mm/s in a time period
of 1 min, sweeping around the radiation sources in a
repeating pattern. The trajectories were computed via a Jacobian
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FIGURE 4 | Set-up enabling the control and data recording of the LBR800 robot.

matrix-based inverse kinematic algorithm as described by
Meredith and Maddock (2004).

The robotic arm was connected by a robot control cable
(X21-to-X31 cable) to a KUKA Sunrise cabinet control box,
as shown in Figure 4. The control box was situated outside
of the irradiation room (behind concrete walls), which meant
it experienced little radiation dose. A host PC was connected
via an RJ45 connection to the control box. In command of
the 1-min cycle, the host PC instructed new position values
for each joint to the control box, which passed these to
the relevant joints. Specifically, a C++ control program was
developed to enable the real-time communication between the
standard host PC and the Sunrise Cabinet. The control program
employed an application programming interface, called KUKA
Fast Robot Interface (KUKA Deutschland GmbH, 2019). This
design minimized the communication latency and, therefore,
allowed for 100 Hz control/data-acquisition rate.

3.3. Dose Rate Measurement at Critical
Positions
The primary purpose of the test was to understand radiation
tolerance, and this required measurement of the robot’s exposure
dose. A real time measurement was required to accurately
quantify the dose accrued prior to failure by each component
of interest. A passive dosimetry measurement would not have
been suitable for this test since the time to failure could not
be predicted, and the failure could occur when experimenters
were not present to withdraw the radiation sources and end
the exposure.

The measurement required is particularly onerous for
radiation detectors, since the exposure was sufficient to affect
electronic performance. The most suitable available detector
was a diamond radiation detector calibrated for air kerma dose
rate measurement, a system already in use at Sellafield and
described by Hutson (2018). This detector was chosen over
other semiconductor detectors and scintillation detectors for its
excellent radiation tolerance, and was already suitably calibrated
for the target exposure dose rate. The detector used a single
crystal diamond grown by chemical vapor deposition measuring
4.5 × 4.5 × 0.5 mm. The diamond detector system applies
dose rates calibrations obtained using both caesium-137 and

cobalt-60, and produces values for air kerma dose rates every
50 ms. Operating in current mode, the detector has no known
upper dose rate limit and has proven extremely tolerant to
gamma radiation.

The detector was placed at a series of positions along the
robotic arm in turn, to quantify the exposure of each bundle
of electronic circuitry and sensors, as shown in Figure 5. For
each position, real time dose rates were measured over 10
min. Once the exposure to each joint had been measured, the
diamond detector was attached to the robot’s end effector for the
remainder of the experiment to continue real time radiometric
measurement. The end effector component was subject to the
largest radiation dose and it was of most interest for the test,
because in a real nuclear decommissioning operation would hold
any cutting tool or sensing package.

3.4. Identifying Robot Performance
Degradation
There were several indicators to help identify performance
degradation and failure of the robotic arm:

1. Demanded and measured joint torque and position values
were recorded in real time into a data spreadsheet at a
sampling frequency of 100 Hz. Prior to the irradiation,
the values were logged for the robot’s arc trajectory for a
reference set of values that could be compared to the values
recorded during the irradiation. Any differences in the pre-
irradiation and irradiation values would illustrate degradation
in robot performance.

2. Two webcams recorded continuous video footage throughout
the irradiation experiment. Example images are given in
Figure 6, showing the footage could be used to monitor the
robot in real time and identify any unexpected movements
from the robotic arm.

3. The KUKA system displayed error messages of the robotic
arm. It was expected that the robot’s software would act to
shut down the system for safety reasons in the event of a
component failure.

In summary, we followed the methodology described herein
consisting of: (1) identifying vulnerable components; (2)
programming a repeating trajectory; (3) measuring the exposure
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FIGURE 5 | Exposure dose rates varied across the length of the robotic arm, hence the diamond detector was mounted at different locations on the KUKA iiwa

robotic arm during the radiation tolerance test, to enable the dose rate measurements shown in Figure 7.

FIGURE 6 | The robotic arm was observed during dynamic irradiation test using two webcams located inside the irradiation cell. Speckle may be observed in both

images.

dose rates of vulnerable components; (4) measuring degradation;
and (5) observing system failure.

4. RESULTS AND DISCUSSIONS

4.1. Exposure Dose Rate Measurement
Necessarily at different distances from the radiation sources,
and moving around an arc, each set of sensors and actuators
was exposed to different fluxes of radiation. Therefore, for each
location of interest on the robot a separate dose rate profile was
measured, to characterize the exposure conditions for each joint.
Measured using a diamond radiation detector, these dose rate
profiles are shown in Figure 7.

4.2. Robot Performance up to Failure
During the initial dynamic experiment, the robot was controlled
to follow the planned trajectory repetitively for ∼6.3 h. This
was a deliberately repetitive action, aimed to provide a detailed
understanding of any changes in parameters occurring as a result
of accumulated radiation damage. These chronic symptoms were
important to understand in case they had any bearing on the
overall control of the robot.

• No changes to the robot trajectory as a result of exposure were
large enough to notice visually using the webcam images.

• No changes to the robot trajectory as a result of exposure
were noticeable by changes in the dose rate profile by
comparing a dosimetry profile at the beginning and end of the
dynamic assessment.

• Subtle changes to the standard deviation of the Joint 2 control
error began to occur after 5 h of this test (after a total of 8 h
exposure) (shown in red in Figure 8).

• No other joints suffered the same increase in control error
during irradiation, leading us to believe it may have been
caused by a slight original defect in Joint 2, not necessarily
caused solely by radiation damage.

4.3. Acute Failure
The robot failed during its stationary exposure, with the cause
being a damaged optical encoder in the end effector (Joint 7). This
component converts the angular position of the joint to a digital
signal for feedback to the controller. The damaged component
was diagnosed by the KUKA control system itself, with a message
“encoder error torque sensor” and “safe axis position invalid,”
and as a result the controller prevented further operation of the
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FIGURE 7 | The averaged dose rate and angular position measurements of each dynamic assessment cycle (for 60 s) over 10 cycles. The angular position and

exposed dose rates are shown for each joint: (A) at Joint 7; (B) at Joint 6; (C) at Joint 5; (D) at Joint 4; (E) at Joint 3; (F) at Joint 2; and (G) at Joint 1.

FIGURE 8 | Evaluation of the angular position control performance of the robot at each joint. (A) The root mean square (R.M.S.) of the control error at each joints. (B)

The standard deviation (S.D.) of the control error at each joints.

robot. Attempts to reboot, remaster, and the passage of time
have been unsuccessful in recovering robot movement: this failed
component was permanently destroyed.

4.4. Exposure Dose Rate and Total Dose
The dose rates measured by the diamond detector dosimetry
system are shown for each joint in Table 1 for both dynamic and
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TABLE 1 | The air kerma exposure dose-rate at each robot joint, measured using

the diamond dose rate system.

Exposed dose

per dynamic

cycle (Gy)

Dose rate during

dynamic assessment

(Gy/h)

Dose rate during

stationary assessment

(Gy/h)

Joint 7 0.1619 9.71 9.68

Joint 6 0.0336 2.02 1.93

Joint 5 0.0237 1.42 1.41

Joint 4 0.0201 1.21 1.16

Joint 3 0.0113 0.68 0.92

Joint 2 0.0077 0.46 0.53

Joint 1 0.0068 0.41 0.41

TABLE 2 | The air kerma exposure dose at each robot joint, measured using the

diamond dose rate system.

During dynamic

assessment (Gy)

During stationary

assessment (Gy)

Overall exposed dose

before failure (Gy)

Joint 7 91.83 72.72 164.55

Joint 6 19.08 14.47 33.55

Joint 5 13.42 10.58 24.00

Joint 4 11.38 8.70 20.08

Joint 3 6.40 6.87 13.27

Joint 2 4.35 3.95 8.30

Joint 1 3.84 3.08 6.91

stationary assessments. These measurements have been used to
calculate the overall exposure to each joint as detailed in Table 2.

The uncertainty of the dose measurement is ±0.6 Gy in the
dynamic assessment for about 9.3 h. Within the following static
assessment, the exposure dose measurement has an uncertainty
of ±0.49 Gy over a period of about 7.5 h. The system exposure
dose has approximate±1.09 Gy uncertainty.

5. DISCUSSION

The KUKA LBR800 robot stopped operating after a large
radiation dose of 164.55(±1.09) Gy to its end effector, and the
component causing the failure was an optical encoder. The
failure of this component was noted by the control software
and smartPAD controller, which subsequently prevented the
robot operating. The inbuilt smart software features were able
to take excellent control of the situation, and we were able to
demonstrate that once the encoder failed, Kuka’s software locked
down the robot in a safe state. This fail-safe mechanism in
software would not have been possible in other more traditional
types of robots using fewer electronic components, so this
software approach should be considered as a significant safety
benefit to any nuclear operator should such faults occur on a
nuclear licensed site. Our test demonstrates that the standard
safety features help ensure that a nuclear material handling
accident due to a slowly failing system would not be possible.

It would be useful in a nuclear facility tomaintain a cumulative
dose reading on a joints (using diamond detectors or other

similarly-sized miniature detectors) to ensure the system can be
given preventative maintenance or component replacement, at
say 75% of its dose-to-failure lifetime, rather than waiting for
device failure at an inconvenient stage in a process.

The target dose rate of 10 Gy/h was chosen as a conservatively
high value of exposure for ILW facilities, and would in reality
more closely represent dose rates found in facilities dealing
with high level waste. Contact dose rates encountered in ILW-
handling facilities are generally 1 Gy/h and below, and so to
simulate ILW facilities more closely it would be appropriate to
use lower exposure doses for future testing programmes.

This paper presents a methodology to test off-the-shelf robots
in radiation environments at a system level. Such system level
tests are of significant benefits providing reference data to
deploy the robot into practical operations, thereby building
confidence that the system has potential to be used in radioactive
environments. The system-level tests also allow for identifying
the least radiation-tolerant component. Clearly, the system-level
test is the necessary initial assessment in order to apply an
off-the-shelf system in a radiation environment.

Note that investment required to buy complete off-the-shelf
systems such as the robot tested in this work is significant.
Therefore, although it is important to carry out system-level tests
to build confidence in environments found in real applications,
the cost of destroying large numbers of robots would be
prohibitive. Hence, the following methodology is recommended
to generate reasonable confidence of expected lifetime:

1. System level test to verify the off-the-shelf robot has
the potential to satisfy initial design requirements in a
radioactive environment.

2. Identification of particular components susceptible to
radiation, through component-by-component analysis of
irradiated robot.

3. Exposure of a statistically significant number of the identified
susceptible components, allowing an estimation of system
service life as a function of a variety of conditions, such as
exposure at several dose rates, different temperatures and
other robot load/operation modes. In a comparable study,
two samples of each individual components were tested to
develop a radiation hardened robot for the nuclear industry
(Sharp and Decreton, 1996). In a good compromise between
statistical rigor and cost, Oomichi et al. (2007) tested 7 to
30 samples of different components. For component-level
testing, we recommend at least 20 samples be irradiated and
analyzed to enable rigorous statistical analysis.

5.1. Recommendations for Further Work
Due to the conservative approach to utilizing new technology in
the nuclear industry, it is of prime importance that the radiation
tolerance of novel technology is understood fully prior to use. In
this experiment the gamma radiation failure dose for the KUKA
robot arm was 164 Gy. However, due to the probabilistic nature
of photon interaction with matter, there is a probability (which
is based on photon energy and electronic material) that when
a photon is incident on an electronic device within the robotic
arm, it will not be absorbed. Furthermore, the manufacturing
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process of electronic components produces a distribution of
characteristics, so if the experiment were repeated, the failure
dose may be higher or lower than we measured. Therefore,
further irradiation tests both of several complete robotic arm
systems would be useful to confirm the failure dose result.
Clearly, this would have significant cost implications, so we
recommend that instead, irradiation testing of a large number
of the least radiation tolerant electronic components (e.g. the
optical encoder) could be performed. This would still provide an
accurate figure on the radiation tolerance of the whole system.

A second recommendation is to fix/replace the broken
encoder in the end effector of the robot and attempt to restore
the robot’s full functionality. After the robot is remastered, more
irradiation tests can be performed. This would be useful to
industry as it would demonstrate that the robot can be fixed and
redeployed, and it will provide more irradiation data for the arm.

Consideration of shielding of particularly vulnerable
components inside the robot would increase the system’s lifetime
in a radioactive environment. It would be beneficial to trial some
micro-shields around components such as the optical encoder
in each joint, constrained by the impact of the additional weight
from shielding which will reduce the possible payload of any
sensors or actuators (e.g., grippers or cutters). Selective shielding
could, at limited cost, substantially increase the lifetime of
the robot.

Component replacement with radiation tolerant alternatives
should be considered if the off-the-shelf robot was unsuitable. For
example, the function performed by the optical encoders could
be carried out by rotary encoders, which are known to be less
susceptible to radiation damage. A cost benefit analysis would
consider the added cost to implement the new components and
the money saved by having an increased lifetime of the robot.

Small alterations in the software safety features within the
robotic arm could be altered to allow the robot to recover should
a joint fail whilst in themiddle of undertaking a task. A robot with
as many as seven joints has significant kinematic redundancy in
the positions within reach, so it is possible for the robot to still
complete its task without a joint in operation. This would extend
the lifetime of the robot further, alternatively it could enable the
robot to complete its immediate tasks and afterwards return to a
safe state ready for corrective maintenance.

Future studies could model/simulate the damage caused to
the robot’s electronics using Monte Carlo modeling software
such as the Geant4 package developed by CERN. Previous
research similar to this has been performed for the application
of radiation damage of electronics used in space by Feng et al.
(2007) and Xiao et al. (2018). Such modeling would require more
detailed knowledge of the distribution of radiation sources than
is generally available for decommissioning nuclear facilities.

6. CONCLUSIONS

The current work has investigated the controlled exposure of
a KUKA iiwa LBR robot to gamma radiation to determine its

tolerance and performance in highly radioactive environments
analogous to nuclear waste processing and storage facilities.

The robot was exposed to gamma radiation from a 20 TBq
cobalt-60 source and displayed significant radiation tolerance,
with failure occurring in an optical encoder after a cumulative
exposure of 164.55 Gy over a period of 16.8 h.

The results indicate that force-torque robots, which offer
an enhanced level of finesse for manipulating objects, are
potentially viable for nuclear waste processing applications. Used
in appropriate applications, robotic technology using modern
sensing and control software has the potential to make a
large impact in the sector in terms of cost savings, safety
and shorter decommissioning timescales. Future work should
consider alternate radiation-tolerant replacements for optical
encoders, and also examine methods of micro-shielding of
vulnerable components to enhance the performance lifetime of
the robotic systems.
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Recognizing material categories is one of the core challenges in robotic nuclear waste

decommissioning. All nuclear waste should be sorted and segregated according to

its materials, and then different disposal post-process can be applied. In this paper,

we propose a novel transfer learning approach to learn boundary-aware material

segmentation from a meta-dataset and weakly annotated data. The proposed method

is data-efficient, leveraging a publically available dataset for general computer vision

tasks and coarsely labeled material recognition data, with only a limited number

of fine pixel-wise annotations required. Importantly, our approach is integrated with

a Simultaneous Localization and Mapping (SLAM) system to fuse the per-frame

understanding delicately into a 3D global semantic map to facilitate robot manipulation

in self-occluded object heaps or robot navigation in disaster zones. We evaluate the

proposed method on the Materials in Context dataset over 23 categories and that our

integrated system delivers quasi-real-time 3D semantic mapping with high-resolution

images. The trained model is also verified in an industrial environment as part of the EU

RoMaNs project, and promising qualitative results are presented. A video demo and the

newly generated data can be found at the project website1 (Supplementary Material).

Keywords: material segmentation, 3D material reconstruction, transfer learning, deep neural network,

nuclear applications

1. INTRODUCTION

Materials recognition is in high-demand in many industries, such as nuclear waste
decommissioning and recycling in a circular economy. Take robotic nuclear waste
decommissioning as an example. The legacy of nuclear waste clean-up is one of the largest
environmental remediation problems in the UK as well as in Europe. An estimated over 100
billion pounds will be spent on waste clean-up over a few decades (of Commons Committee of
Public Accounts, 2013). Humans can handle radioactive waste but only for limited periods and
by wearing special air-fed protection suits, which then become contaminated. In other words,
conventional nuclear waste decommissioning turns becomes an open-ended problem as more
nuclear waste is generated. For these reasons, autonomous robotic nuclear waste sorting and
segregation will be the only solution for reducing secondary waste.

1https://sites.google.com/view/dense-semantic-mapping/home
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Recognizing the material of which waste objects are composed
is important in nuclear waste decommissioning, as different post-
process and levels of segregation will be applied according to
the material. For example, combustible materials (e.g., wood
and clothing) can be burned, and deformable materials (e.g.,
rubber and plastic) can be melted and compressed. Our team
is part of NCNR (the National Center for Nuclear Research)
and works closely with the National Nuclear Lab on advanced
robot perception and manipulation for waste decommissioning.
This paper uniquely tackles the material recognition problem for
the nuclear industry, and we propose a visual-based semantic
segmentation approach to identify waste material categories in
cluttered scenes.

Deep learning-based semantic understanding is the state-of-
the-art in fundamental computer vision challenges, and large-
scale annotation is required to learn a robust model to deal
with the variability of the real world. However, in novel
robotic applications, e.g., nuclear waste material recognition,
very limited data can be provided because confidential nuclear
data is not publicly available. Hence, leveraging public datasets
and transferring the knowledge from other vision tasks to this
novel application is highly desirable. Moreover, the capability
to perform boundary-aware annotation and 3D semantic
reconstruction can provide high-level semantic knowledge to
robots, which allows the manipulator to dexterously fetch or
remove waste objects from highly self-occluded heap or bin.

Facing these challenges, in this paper, we mainly focus
on the following two problems. (i) Recognizing the material
categories pixel-wise and simultaneously fusing per-frame
recognition into a dense 3D map for robotic applications in
the nuclear industry. (ii) Transferring knowledge from meta
computer vision data to the material recognition problem and
transferring knowledge from a relatively simple task (i.e., material
categorization) to a more challenging task (i.e., boundary-aware
material segmentation).

Specifically, we present a material semantic reconstruction
system that can perform real-time 3D reconstruction while
simultaneously recognizing and labeling each voxel according
to its material in the generated dense 3D map. We evaluate
the proposed approach using both a public material dataset
and real-world industrial data from qualitative, quantitative, and
running-time perspectives to verify the feasibility of the proposed
system. The main contributions of this paper can be summarized
as follows:

1. To the best of our knowledge, this is the first system to
achieve simultaneous material recognition and dense scene
reconstruction. It can integrate high-level semantic knowledge
into conventional 3D geometry reconstruction.

2. The pixel-wise material segmentation is achieved via transfer
learning from general object recognition to specific material
recognition and from an image-wise classification task to
a pixel-wise segmentation task. The proposed approach is
end-to-end learned, without requirements for hand-crafted
features or post-processing optimization.

3. The running-time performance of the well-implemented
system can be boosted to around 10 Hz using a standard GPU,

which is enough to deploy quasi-real-time material semantic
reconstruction in industrial scenarios.

4. Because the large-scale material dataset, i.e., Materials in
Context (MINC) (Bell et al., 2015), only provided very
coarse annotated data for the material classification and
segmentation, we generated high-quality new data including
RGB image patches (821,092 patches for training, and 96,747
patches for testing) and fully pixel-wise annotated RGB images
(1,498 images for training, and 300 images for testing).
Those data are released as an important supplement of the
MINC dataset for benchmarking material classification and
segmentation research.

2. RELATED WORK

Vision-based material understanding, including classification,
segmentation, and reconstruction, has as yet been little
investigated, even though it is highly desirable for industrial
robotics applications, e.g., nuclear robotics. As it must deal with
the variation in brightness and illumination in the real world
as well as learning a generalizable model from observations,
material recognition in unconstrained environments is known to
be a challenging research task.

CURet (Dana et al., 1999) was the first material dataset to
be established. This consists of 61 material categories, and each
category is captured with images taken under 205 different
illumination and pose conditions. Eric et al. proposed the KTH-
TIPS (Hayman et al., 2004) and KTH-TIPS (Caputo et al.,
2005) datasets as supplementary to CURet, providing variations
in scale in addition to in pose and illumination. The Flickr
Material Database (Sharan et al., 2009) provides 10 different
material categories, with 100 different samples for each category.
The GeoMat (DeGol et al., 2016) dataset is the first dataset
to provide material images with 3D geometry data. However,
all of the above datasets are built for material classification
rather than the pixel-wise material segmentation. The Materials
in Context (MINC) (Bell et al., 2015) dataset is the first large-
scale material dataset that is of good diversity and is well-
sampled across 23 category materials. It provides two kinds of
annotated data: RGB image patches and pixel-wise labeled RGB
images. Moreover, a 4D light field material dataset proposed
byWang et al. (2016) captures the material images frommultiple
viewpoints through a light-field camera.

For material classification, most previous research has
employed hand-crafted visual features, e.g., reflectance-based
edge features (Liu et al., 2010), pairwise local binary patterns (Qi
et al., 2014), local binary patterns (Li and Fritz, 2012), and
variances in oriented gradients (Hu et al., 2011) for classifiers
such as Fisher Vector (FV) (DeGol et al., 2016) and Support
Vector Machines (SVMs) (Hayman et al., 2004; Caputo et al.,
2005). Since deep learning dominates the computer vision
community, deep-learned features (Schwartz and Nishino, 2013;
Cimpoi et al., 2014) are also adopted to achieve state-of-the-
art accuracy of material classification. Moreover, DeGol et al.
(2016) not only employ 2D visual features, e.g., texture and
color, but also 3D geometrical features, e.g., surface normals,

Frontiers in Robotics and AI | www.frontiersin.org 2 May 2020 | Volume 7 | Article 5253

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Zhao et al. Material Segmentation and 3D Reconstruction

to improve the material classification. However, this research
can only perform material classification with RGB patches, and
pixel-wise material recognition, i.e., semantic segmentation of
materials, is not achieved.

In order to achieve pixel-wise material recognition, Bell et al.
(2015) converted CNN classifiers trained on image patches into
an efficient fully convolutional framework with a fully connected
conditional random field (CRF) for the material segmentation.
Schwartz and Nishino (2016) took advantage of the abilities of
both CNN and RNN to perform superior segmentation using
local appearance and separately recognized global contextual
cues, e.g., objects and places. Cimpoi et al. (2015) proposed a new
texture descriptor, FV-CNN, obtained by Fisher Vector pooling
of a CNN filter bank and achieved state-of-the-art performance
on the Flickr Material Database (Sharan et al., 2009). Wang
et al. (2016) utilized proposed new 4D light-field images to train
an FCN with post-processing to achieve material segmentation.
Further research (Giben et al., 2015; Purri et al., 2019) achieved
interesting material segmentation applications on the Satellite
and Railway Track images, respectively.

In contrast to our proposed approach, all of the above
studies focus on material classification or segmentation without
reconstruction so that the semantic information of material
cannot be integrated into the 3D geometry map. The proposed
approach in this paper can perform material segmentation
and reconstruction simultaneously to generate a 3D semantic
map. With the assistance of this high-level semantic (material)
knowledge, a robot can perform robot-environment interactive
tasks or motion planning in industrial scenarios.

3. METHODOLOGY

3.1. System Overview
This paper proposes a fully integrated system for material
segmentation and reconstruction. It can perform real-time 3D
dense mapping while simultaneously recognizing and labeling
each point cloud in the map according to its material category.
As Figure 1 shows, the system consists of two main parts: single-
frame material segmentation and 3D semantic reconstruction
(mapping). To be specific, the RGB image captured by the
RGB-D camera is fed into a Deep Neural Network (DNN) to
achieve pixel-level material segmentation. The semantic point
cloud is then generated using the data pair of the semantically
labeled RGB image and the corresponding depth image via
back-projection. A sequence of semantic point clouds are
incrementally combined via visual odometry, andmeanwhile, the
label probability of each point is refined by Bayesian updating.
Finally, a dense 3D semantic map indicating voxel-wise material
categories is generated. Please note that the color palette used in
all of the Figures in this paper can be found in Figure 2.

3.2. Dataset and Data Preprocessing
The Materials in Context (MINC) dataset (Bell et al., 2015) is
used to train and evaluate the proposed neural network. MINC is
diverse and well-sampled across 23 categories, including ceramic,
fabric, leather, stone, wood, etc.

Nuclear waste can be categorized into fuel waste and technical
waste, and both are radioactive. The technical waste makes up
more than 97% of the total waste and includes all types of
waste produced during power generation, for example, liquid
containers (such as bottles, cans), disposable protective items
(e.g., suits, masks, gloves), and even construction materials (e.g.,
bricks and wood) used in the nuclear power station. Because
nuclear waste containers are very expensive and space in a
container is limited, the waste will be processed according
to its materials to best utilize the space in containers. For
example, wood and clothes can be burned, and the ashes can
be stored, while objects like plastic bottles and metal cans
can be compressed into blocks with small volumes. Therefore,
material recognition is a critical task for nuclear waste sorting
and segregation.

This paper focuses on recognizing the material categories of
nuclear technical waste and the challenges of dealing with the
variation of materials (i.e., inter-class dissimilarities) and the
variability of the real world (e.g., brightness and illumination).
In addition, we cannot obtain real nuclear technical waste at the
current stage for network training. For these reasons, we choose
to use a large-scale material dataset, MINC, which includes most
kinds of materials found in technical waste, to train and evaluate
our model.

MINC provides two different types of annotations for training:
a set of RGB patches with class labels, as shown in Figure 3A,
and another set of partially pixel-wise labeled RGB images, as
shown in Figure 3B. However, neither of these can be used
directly for training end-to-end semantic segmentation network.
There are many NaN values (shown as gray parts in Figure 3)
in the original RGB patches, which give rise to a need for
strong error supervision to prevent the classification network
from converging. On the other hand, in the partially pixel-
wise labeled RGB image, only the foreground object is labeled,
whereas the background objects are masked. Thus, these images
cannot provide contextual information during the training of the
segmentation network.

Therefore, data preprocessing is applied to the MINC dataset.
We first resize the original RGB image (500 × 500) and
then extract RGB patches of different sizes (56 × 56, 156 ×

156, 256 × 256, and 356 × 356) from it. This ensures that
there are no NaN values in extracted patches and that only
one type of material is at the center of each patch. Finally,
821,092 patches with corresponding class labels are generated
for training, and 96,747 patches with class labels are generated
for testing.

Next, we combine all of the partially pixel-wise labeled
images that belong to the same original image to generate a
single fully pixel-wise labeled image, as shown in Figure 3D.
Since not all pixels are labeled in original images, the newly
generated ground truth images are not 100% labeled. We
further label all the unlabeled pixels, and repeated labeled
pixels are treated as a category to be ignored during the
training process. Finally, we generate 1,498 pixel-wise labeled
training images and 300 pixel-wise labeled testing images. The
size of the pixel-wise labeled ground truth images is also set to
500× 500.
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FIGURE 1 | The pipeline of the proposed system of simultaneous material segmentation and reconstruction.

FIGURE 2 | The color palette used in this paper.

3.3. Material Classification
We first train a deep classification network using the generated
RGB patches with the corresponding class labels. The VGG-
16 (Simonyan and Zisserman, 2014) network, consisting of
five convolution stacks and three dense connect layers, is
employed for the classification task. However, the VGG-16
network is designed for the ImageNet challenge2 and thus
can classify images into 1,000 object categories. We therefore
modify the number of output nodes (i.e., the last dense

2https://www.image-net.org/

connected layer of the VGG-16 network) to 23 instead of
1,000 for MINC material classification. Moreover, in order to
accelerate the training, we transplant the weights of VGG-16
from the off-the-shelf pre-trained model3 on ImageNet to our
neural network.

We provide performance evaluation of the classification
using different sizes of patches in the experiment section. For
feature representation learning, small patches can provide more
texture information, while fully annotated images can provide

3https://www.robots.ox.ac.uk/~vgg/research/very_deep/
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FIGURE 3 | Data preprocessing. (A) A patch with NaN values in MINC. (B) A partially pixel-wise labeled image in MINC. (C) Extracting new patches from original

images in MINC. (D) Combining the partially pixel-wise labeled images to generate a fully pixel-wise labeled image.

more contextual information. Thus, the choice of patch size
for the classification task is a trade-off between textural and
contextual information.

3.4. Material Segmentation
Next, we train a segmentation network using the generated
pixel-wise labeled RGB images. As Figure 4 shows, the
segmentation network consists of two sequential sub-networks:
a Fully Convolutional Network (FCN) (Long et al., 2015) and
Conditional RandomFields as Recurrent Neural Networks (CRF-
RNN) (Zheng et al., 2015). FCN can provide a coarse
semantic segmentation with prediction potentials to CRF-
RNN, while CRF-RNN can smooth the label assignments
between neighboring pixels to refine the coarse segmentation
generated by FCN. Unlike the conventional approaches, which
employ CRF as post-processing, we plugged in CRF-RNN
after FCN as a unified framework that can be trained in an
end-to-end way.

3.4.1. FCN
FCN is a widely used end-to-end and pixel-to-pixel semantic
segmentation network that consists of a convolution stack, a
deconvolution stack, and a skip architecture. The convolution
stack has the same architecture as the VGG-16 network truncated
after pooling five layers. It can learn high-level semantic features
with context cues by enlarging the receptive fields. However, it
cannot retain significant boundary information on objects and
structures due to the application of a series of pooling layers. The
deconvolution stack can transform a feature map of the same
size as the input RGB image. The skip architecture combines
high-level and coarse semantic features from deep layers with
low-level and fine features from shallow layers. Therefore, FCN
can improve the performance of semantic segmentation by
fusing the feature maps from both deep and shallow layers.
However, FCN does not incorporate smoothness constraints
between neighboring pixels so that it can only give a coarse
pixel-wise prediction with some blob-like shapes.

3.4.2. CRF-RNN
CRF-RNN means Conditional Random Fields as Recurrent
Neural Networks, which is a hybrid model combining the
learning property of CNN with the probabilistic graphical
property of CRF. It can be inserted after a deep neural network
to refine the coarse segmentation results generated.

Fully connected CRF (Krähenbühl and Koltun, 2011) takes
account of contextual cues by minimizing the energy E(x)
function to generate the most likely label assignment x. There
are unary energy components and pairwise energy components
in the Energy function E(x):

E(x) =
∑

i

ψu(xi)+
∑

i<j

ψp(xi, xj). (1)

The unary term ψu(xi) obtained from the FCN measures the
inverse likelihood of each pixel i assigning the corresponding
label. However, the predicted pixel labels do not consider
the smoothness or consistency of label assignments between
neighboring pixels j. In contrast, the pairwise term ψp(xi, xj) can
penalize similar pixels that have different labels and encourage
similar labeling of pixels with similar properties.

Pairwise potentials can be modeled as a linear combination

of M Gaussian edge potential kernels k
(m)
G using different

weights ω(m):

ψp(xi, xj) = µ(xi, xj)
M

∑

m=1

ω
(m)k

(m)
G (fi, fj). (2)

The Gaussian kernel k(m)
G is applied to feature vectors fi of pixel i,

e.g., spatial or color information. The label compatibility function
is described as a Potts model µ(xi, xj) = [xi 6= xj]. The Gaussian

kernel k
(m)
G in the pairwise potentials consists of a bilateral

appearance potential and a spatial smoothing potential (M = 2):

k(fi, fj)G = ω
(1)exp(−

|pi − pj|
2

2θ2α
−

|Ii − Ij|
2

2θ2
β

)+ω(2)exp(−
|pi − pj|

2

2θ2γ
), (3)
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where pi and pj refer to the spatial feature x, y, z and Ii and Ij refer
to the color feature R,G,B. The parameters of Gaussian kernels
are described using θα , θβ , and θγ .

Due to the consideration of pairwise potentials over all pixel-
pairs in the whole image, minimizing the energy function in the
fully connected CRF exactly is intractable. Therefore, the mean-
field approximation is adopted to approximate the maximum
posterior marginal inference. In CRF-RNN, one mean-field
iteration can be formulated as a stack of common neural
layers. The Initialization, Message Passing, Weighting Filter
Outputs, Compatibility Transform, Adding Unary Potentials,
and Normalizing operations in the mean-field iteration are
implemented through Softmax, Convolutional, Convolutional,
Convolutional, Concatenated, and Softmax layers, respectively.
The repeated multiple mean-field iterations can be further
formulated as a Recurrent Neural Network via repeating the
above stack of layers.

In this work, the CRF-RNN is plugged in after the FCN to
form a unified framework, and it is trained in an end-to-end
manner. During the training process, the error differentials of
CRF-RNN are passed to FCN via backward propagation through
time, so that the FCN is able to generate better unary potentials
for CRF-RNN optimization via forward propagation. More
importantly, the parameters in CRF, e.g., the weights of Gaussian
kernels and the label compatibility function, are automatically
optimized during the full network end-to-end training.

3.5. Transfer Learning
The public VGG-16 model is well-trained using the large-
scale ImageNet dataset and can classify objects from daily life
belonging to 1,000 different categories. The learned knowledge
from object classification should be helpful for the material
classification. On the other hand, there are a huge number of
sparsely labeled RGB patches (821,092) but a limited number
of pixel-wise labeled RGB images (1,498) generated from the
MINC dataset. Hence, we transfer the learned knowledge of
the classification network to enhance the performance of the
segmentation network via transfer learning.

As shown in Figure 4, there are two steps of knowledge
transfer during the overall training process. The first step
transfers the learned weights of the VGG-16 network pre-
trained on ImageNet to the material classification network. The
second step transfers the learned weights of the classification
network, i.e., the VGG-16 network truncated after pooling five
layers, to the segmentation network, i.e., the convolution stack
of FCN. Both of them are implemented by learned network
weights initialization followed by network fine-tuning. The first
transfer learning focuses on the same network architecture
but transfers the learned knowledge from object classification
to material classification, while the second transfer learning
focuses on two different network architectures but transfers
the learned knowledge from a classification network to a
segmentation network.

3.6. Material Reconstruction
A graph-based SLAM, i.e., RGB-D SLAM (Endres et al., 2014),
is employed to achieve dense 3D material reconstruction. Given

a semantic labeled image with the corresponding depth image,
a 3D semantic point cloud (X,Y ,Z) can be generated through
back projection:

du,v





u
v
1



 =





fx s cx
0 fy cy
0 0 1









X
Y
Z



 , (4)

where (u, v) refer to the pixel position in the image plane and
du,v refer to the corresponding depth value. fx, fy refer to the focal
length, and (cx, cy) refer to the principal point offset. s refers to
the axis skew.

The visual odometry of RGB-D SLAM can estimate the ego-
motion between two adjacent semantic point clouds and further
enable an incremental semantic label fusion. Finally, using the
global trajectory provided by the visual odometry, all of the
semantic point clouds are combined together to generate a global
semantic map. A Bayesian update is used for label hypothesis
fusion using the multi-view semantic point clouds. Each voxel
in a semantic point cloud stores the predicted label with the
corresponding discrete probability. The voxel’s label probability
distribution is updated by means of a recursive Bayesian update:

P(x = li|I1,...,k) =
1

Z
P(x = li|I1,...,k−1)P(x = li|Ik), (5)

where li refers to the predicted label, Ik refer to the kth image, and
Z refers to the constant for distribution normalization.

4. EXPERIMENTS

In this section, the details of the network training process
are first introduced. We then present performance evaluations
of three different experiments: material classification, material
segmentation on the MINC dataset, and material semantic
reconstruction in an industrial scenario.

4.1. Network Training
We first train the VGG-16-based classification network using the
newly generated 821,092 RGB patches of four different sizes, 56
× 56, 156× 156, 256× 256, and 356× 356. The network weights
are initialized using the public VGG-16 model pre-trained on
ImageNet. Secondly, we train the FCN-32s, FCN-16s, and FCN-
8s segmentation networks step by step using the newly generated
1,498 pixel-wise labeled 500 × 500 RGB images. The weights of
the convolution stack in FCN are inherited from the fine-tuned
VGG-16 model truncated after pooling five layers.

Finally, we insert the CRF-RNN after FCN as the bottom part
of the whole network. After inheriting the learned FCN weights,
the FCNwith CRF-RNN network is trained again using the pixel-
wise labeled RGB images in an end-to-end manner. During the
training process, we set the number ofmean-field iterationsT to 5
in the CRF-RNN. This can reduce the training time and mitigate
the vanishing gradient problem. During the test process, we set
the number of mean-field iterations T to 5 or increase it to 10
according to the run-time required.

The parameters of all the trained networks, i.e., the learning
rate, momentum, batch size, weight decay, and the type of
training data, can be found in Table 1.
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FIGURE 4 | The architecture of the proposed network and transfer learning.

TABLE 1 | The parameters of network training.

Learning

rate

Momentum Batch size Weight

decay

Training

data

VGG-16 1e-4

reduction

with 0.1

0.95 50 0.0005 256×256

RGB patch

FCN-32s 1e-10 0.99 1 0.0005 500×500

RGB image

FCN-16s 1e-12 0.99 1 0.0005 500×500

RGB image

FCN-8s 1e-14 0.99 1 0.0005 500×500

RGB image

FCN with

CRF-RNN

1e-12 0.99 1 0.0005 500 × 500

RGB image

4.2. Material Classification
The newly generated 96,747 RGB patches are employed
for the material classification evaluation. We present the
experimental results for the VGG-16 network trained by
four differently sized patches in Table 2. It can be seen
that the accuracy of classification initially increases but then

TABLE 2 | The accuracy of material classification vs. patch size.

Patch size 56×56 156×156 256×256 356×356

Accuracy 69.20% 81.06% 80.18% 73.40%

The best performance is in bold.

decreases with increasing patch size. The optimal accuracy
is reached when the patch size accounts for about 30–
50% of the original image. The reason for the accuracy
increasing initially is that more contextual cues become available
with growth in the patch size, while the reason for the
accuracy then decreasing is that there is a loss in spatial
resolution with the growth of the path size. The best trade-off
patch size for balancing the spatial resolution and contextual
information is between 156 × 156 and 256 × 256 for the
500× 500 images.

4.3. Material Segmentation
The newly generated 300 pixel-wise labeled images are
employed for the material segmentation evaluation.
Following (Long et al., 2015), the standard parameters for
semantic segmentation evaluation, namely pixel accuracy,
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FIGURE 5 | Material segmentation in MINC dataset. From left to right, top to bottom, the IDs of the sub-figures are (A–P). The first row, i.e., (A–D), are original RGB

images, the second row, i.e., (E–H), are ground truth images, the third row, i.e., (I–L), are semantic segmentation results of FCN, and the fourth row, i.e., (M–P), are

semantic segmentation results of FCN with CRF-RNN.

mean accuracy, mean intersection over union (IoU),
and frequency weighed intersection over union (IoU),
are adopted for performance analysis. These metrics are
defined as:

• Pixel accuracy:
∑

i nii/
∑

i ti,
• Mean accuracy: (1/ncl)

∑

i nii/ti,
• Mean IoU: (1/ncl)

∑

i nii/(ti +
∑

j nji − nii),

• Frequency weighted IoU: (
∑

k tk)
−1 ∑

i tinii/(ti+
∑

j nji−nii).

Here, ncl refers to the number of classes, nij refers to the number
of pixels of class i classified as class j, and ti =

∑

j nij refers to the
total number of pixels belonging to class i.

4.3.1. Qualitative Analysis
The qualitative results of material segmentation on the MINC
dataset are given in Figure 5. Due to the lack of neighborhood
consistency constraints, there are a lot of non-sharp boundaries
in the segmentation results of FCN. After plugging in CRF-RNN
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after FCN for the label assignment smoothing, the boundaries
of the segmentation results are much clear compared with when
using only FCN.

The first and second rows in Figure 5 show the original and
ground-truth images on MINC. The third and fourth rows in
Figure 5 show the 2D semantic segmentation results of FCN and
of FCN with CRF-RNN, respectively. It can be seen that FCN
with CRF-RNN generates semantic results with much clearer
shapes than FCN alone, e.g., table legs in (Figure 5M), a person
in (Figure 5N), a sofa in (Figure 5O), and a chair back and
vase in (Figure 5P). In (Figure 5L), a large section of “fabric” is
erroneously labeled as “carpet,” while the size of this erroneous
area greatly decreases in (P) because of the neighborhood
consistency constraints of the CRF-RNN optimization.

4.3.2. Quantitative Analysis
Quantitative results for the overall performance and class-
wise accuracy of material segmentation on the MINC dataset
are given in Tables 3, 4, respectively. As Table 3 shows, FCN
with CRF-RNN achieves 81.94, 74.19, 61.13, and 69.99% for
the pixel accuracy, mean accuracy, mean IoU, and frequency
weighed IoU, respectively, on the MINC dataset. Compared
to FCN without CRF-RNN, FCN with CRF-RNN exhibits an
improvement of 3.53, 2.28, 4.62, and 3.92%, respectively, for

TABLE 3 | The overall performance of material segmentation on the MINC

dataset.

Pixel acc. (%) Mean acc. (%) Mean IU (%) f.w. IU (%)

FCN 78.41 71.91 56.51 66.07

FCN with

CRF-RNN

81.94 74.19 61.13 69.99

The best performance is in bold.

the pixel accuracy, mean accuracy, mean IoU, and frequency
weighed IoU. As Table 4 shows, the class-wise accuracy for most
classes is satisfactory, e.g., Hair (92.11%), Sky (96.71%), and
Water (99.07%), but the performances for several classes are still
inferior, especially Plastic (35.94%), due to the limited amount
of training data. After introducing CRF-RNN following FCN-8s,
the class-wise accuracy of each class increases by around 3–6%.

To the best of our knowledge, material segmentation is
currently a less-studied research topic, and no good benchmark
ranking has yet been deployed on the large-scale material
datasets. The MINC dataset is the most popular material dataset
for deep learning research, but it is a very coarse dataset, so
a lot of data preprocessing and generation are required. The
newly generated data in this paper are released as an important
supplement to the MINC dataset, and the results provided can
be employed as a baseline for future research. We hope that
these can improve the benchmarking of research with respect to
material classification and segmentation.

4.3.3. Running-Time Analysis
We also provide the running-time performance of the proposed
network in Table 5. The network is deployed using the 500× 500
RGB images from the MINC dataset on a computer with an i7-
6800k (3.4 Hz) 8-core CPU and NVIDIA TITAN X GPU (12 G).

TABLE 5 | The running-time performance on the MINC dataset.

Running-time (s) CRF iterations Image size

FCN 0.13–0.15 – 500 × 500

FCN with

CRF-RNN

0.4–0.6 10 500 × 500

FCN with

CRF-RNN

0.2–0.3 5 500 × 500

TABLE 4 | Comparison of the class-wise accuracy on the MINC dataset.

Category Brick Carpet Ceramic Fabric Foliage Food

FCN 61.02% 84.87% 72.95% 80.88% 78.62% 65.04%

FCN with

CRF-RNN

63.82% 86.18% 80.84% 84.26% 77.38% 63.86%

Category Glass Hair Leather Metal Mirror Other

FCN 67.28% 92.08% 72.05% 72.35% 63.45% 39.44%

FCN with

CRF-RNN

62.66% 92.11% 71.91% 76.25% 69.81% 65.19%

Category Painted Paper Plastic P-Stone Skin Sky

FCN 90.62% 56.83% 43.94% 51.75% 81.72% 95.96%

FCN with

CRF-RNN

89.35% 62.82% 35.94% 65.12% 83.37% 96.71%

Category Stone Tile Wallpaper Water Wood Mean

FCN 62.68% 66.16% 77.11% 97.82% 79.28% 71.91%

FCN with

CRF-RNN

63.73% 63.98% 69.17% 99.07% 82.89% 74.19%

The best performance among the compared methods is in bold. P-Stone, Polished Stone.
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The running-time of FCN-based segmentation costs 0.13–0.15
s, and that of FCN with CRF-RNN costs 0.4s–0.6 s with 10
iterations or 0.2–0.3 s with five iterations. The running-time
performance can be improved greatly if a smaller RGB image is
used, which can enable real-time or near-real-time application of
material segmentation.

4.4. Material Reconstruction
As well as the evaluation on the MINC dataset, we further
evaluate the proposed system in an industrial scenario, i.e., a
real industrial room containing many different materials such as
wood, brick, paper, metal, carpet, painted surfaces, and others.
The system deploys a real-time 3D mapping of the room while
simultaneously recognizing and labeling each point according to
its material in the built 3D map. The network used in the system
is only trained using the MINC dataset without fine-tuning on
the real industrial data.

4.4.1. Qualitative Analysis
We give the qualitative results of each step generated by the
proposed system, i.e., original RGB image, material segmentation
image, 3D point clouds, and 3D semantic point clouds in
Figure 6. We also provide the local/global 3D map and
local/global 3D semantic map of the industrial room in Figures 7,
8, respectively.

We can see that most of the materials are correctly classified
and segmented in the dense 3D semantic map. However, some
small objects are not labeled correctly due to there not being
enough pixels provided in the original RGB image. The pixels
at the border between two different materials are more easily
assigned to the wrong labels. The domain variances, e.g., varying
field of view, varying illumination, different imaging devices
between the training and test data, also result in some wrong
label predictions.

4.4.2. Quantitative Analysis
We provide the quantitative results evaluated via pixel accuracy,
mean accuracy, mean IoU, and frequency weighed IoU
in Table 6. First, 40 key frames of 3D reconstruction in
the industrial room were captured from RGB-D SLAM.
Next, all the key frames were densely annotated according
to the kind of material via JS Segment Annotator4.
Finally, pixel-wise false or true numbers were counted
between the corresponding pixels from predicted and
ground-truth images.

As Table 6 shows, we achieve 80.10, 58.75, 39.45, and
68.76% for the pixel accuracy, mean accuracy, mean IoU, and
frequency weighed IoU, respectively, tested in the industrial
room. The pixel accuracy (80.10%) achieves a satisfying level,
but the mean accuracy (58.75%) is much lower than the
reported result for MINC evaluation (76.87%). Because we
only tested 40 samples, there is a large variance in material
detection rates. The pixel-wise recognition and segmentation
accuracy of some materials, e.g., Paper (6.78%) and Mirror
(0%) is very low. However, a mirror appears in only one

4http://kyamagu.github.io/js-segment-annotator/

TABLE 6 | The overall performance of material semantic reconstruction in an

industrial scenario.

Pixel acc. (%) Mean acc. (%) Mean IU (%) f.w. IU (%)

3D semantic

reconstruction

80.10 58.75 39.45 68.76

TABLE 7 | The running-time performance of the proposed system.

Running-time (Hz) CRF iterations Image size

FCN with

CRF-RNN

∼ 2 10 500 × 500

FCN with

CRF-RNN

∼ 4 5 500 × 500

FCN with

CRF-RNN

∼ 10 5 224 × 224

instance, so failure to recognize just one instance of Mirror
generates an accuracy of 0% for that category, whichmisleadingly
skews the overall mean accuracy score toward a low value.
In addition, the domain variances, e.g., varying field of view,
varying illumination, and different imaging devices between
the training and test data, also decrease the performance
tested in the industrial room because the network is only
trained using the MINC dataset without fine-tuning using the
industrial data.

4.4.3. Running-Time Analysis
The whole system is deployed on a computer with an i7-
6800k(3.4 Hz) 8-core CPU and NVIDIA TITAN X GPU (12
G). The IAI Kinect2 package5 is adopted to interface with
ROS and calibrate the RGB and depth cameras of Kinect2.
The network is implemented based on the Caffe6 toolbox and
accelerated by CUDA and CUDNN. The overall system is
implemented through C++ and GPU programming within the
ROS7 framework.

We provide the running-time performance of the whole
system in Table 7. The system running-time performance is
about 2 Hz (10 iterations) or 4 Hz (5 iterations) using the QHD
RGB and depth images from Kinect2. The 540 × 960 RGB
images are first reduced to 500 × 500 RGB images for material
segmentation and are then recovered to 540 × 960 RGB images
for semantic reconstruction. The running-time performance can
be boosted to around 10 Hz when the QHD RGB images are
decreased to 224 × 224 RGB images, using five CRF-RNN
iterations for material segmentation.

As mentioned (Hermans et al., 2014), there is no necessity to
segment all the frames for the RGB-D SLAM because most of the
frames are abandoned and only a few key frames (about 20%) are
used for dense 3Dmapping. In this case, a 5–10 Hz running-time

5https://github.com/code-iai/iai_kinect2/
6http://caffe.berkeleyvision.org/
7https://www.ros.org
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FIGURE 6 | The qualitative results of each step generated by the material segmentation and reconstruction system. The first column are RGB images from Kinect2,

the second column are material segmentation images, the third column are 3D point clouds, and the fourth column are 3D semantic point clouds.

FIGURE 7 | Material segmentation and reconstruction in an industrial scenario. (Left) Local 3D map. (Right) Local 3D semantic map.

FIGURE 8 | Material segmentation and reconstruction in an industrial scenario. (Left) Global 3D map. (Right) Global 3D semantic map.

performance can basically meet the requirement of a real-time
material semantic reconstruction.

5. CONCLUSIONS

In this paper, we propose a novel transfer learning method
to determine material categories from RGB images. Our
approach is data-efficient, with maximization of the utility of
a fundamental computer vision dataset and coarse annotated
data. Consequently, our approach shows strong effectiveness in

solving real-world problems, where large-scale training datasets
are not available.

Moreover, the material understanding proposed by the
neural network is integrated with 3D dense reconstruction, and
incremental dense material labeling of a 3D scene is performed.
The running-time performance of the whole system can be
boosted to approximately 10 Hz to satisfy the requirement of
real-time applications. We report qualitative, quantitative, and
running-time evaluation analysis of the proposed approach using
both the public material dataset and real-world industrial data

Frontiers in Robotics and AI | www.frontiersin.org 11 May 2020 | Volume 7 | Article 5262

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Zhao et al. Material Segmentation and 3D Reconstruction

to verify the resultant segmentation accuracy and running-
time performance.

The newly generated high-quality dataset, including RGB
image patches and fully pixel-wise annotated RGB images,
is released as an important supplement for the MINC
dataset. Our approach has a good alignment with industrial
applications, especially nuclear robotics. As an essential part
of the EU H2020 RoMaNs project, the proposed system has
the potential to demonstrate its capability of guiding robots
to navigate in industrial scenes and manipulate objects in a
self-occluded heap.
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Long-range, high-altitude Unoccupied Aerial System (UAS) operations now enable

in-situ measurements of volcanic gas chemistry at globally-significant active volcanoes.

However, the extreme environments encountered within volcanic plumes present

significant challenges for both air frame development and in-flight control. As part of

a multi-disciplinary field deployment in May 2019, we flew fixed wing UAS Beyond Visual

Line of Sight (BVLOS) over Manam volcano, Papua New Guinea, to measure real-time

gas concentrations within the volcanic plume. By integrating aerial gas measurements

with ground- and satellite-based sensors, our aim was to collect data that would

constrain the emission rate of environmentally-important volcanic gases, such as carbon

dioxide, whilst providing critical insight into the state of the subsurface volcanic system.

Here, we present a detailed analysis of three BVLOS flights into the plume of Manam

volcano and discuss the challenges involved in operating in highly turbulent volcanic

plumes. Specifically, we report a detailed description of the system, including ground

and air components, and flight plans. We present logged flight data for two successful

flights to evaluate the aircraft performance under the atmospheric conditions experienced

during plume traverses. Further, by reconstructing the sequence of events that led to the

failure of the third flight, we identify a number of lessons learned and propose appropriate

recommendations to reduce risk in future flight operations.

Keywords: unmanned aircraft system (UAS), UAV, aerial robotic, volcano, plume, BVLOS, Manam, gas sensing

1. INTRODUCTION

The application of instrumented small UAS (Unoccupied Aerial Systems), or alternatively “drones,”
has had a transformational influence on volcanological research over the past decade, particularly
in recent years where the miniaturization of scientific instrumentation has begun to approach
the rapid progression of UAS technology (Jordan, 2019; James et al., 2020). Driven largely by
the consumer market, UAS control systems and hardware have now advanced to the point where
relatively little training is required to operate multi-rotor platforms equipped with complex sensors.
Aerial robotic systems are being developed and deployed increasingly for a range of environmental
applications (Fladeland et al., 2011; Vivoni et al., 2014; Detweiler et al., 2015; Klemas, 2015; Pajares,
2015; Bhardwaj et al., 2016). In particular, significant traction is being realized in the areas of remote
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sensing (Immerzeel et al., 2014; Tamminga et al., 2015), mapping
2D/3D structures (Nagai et al., 2009; Stöcker et al., 2015; Zweig
et al., 2015) and atmospheric sampling (Cassano, 2013; Villa et al.,
2016; Greatwood et al., 2017) using a range of emerging sensor
technologies (Wildmann et al., 2013; Detert and Weitbrecht,
2015; Hill and Clemens, 2015). Atmospheric sampling has been
performed either by multi-rotor UAS at lower altitudes in the
500–1,000 m range (Cassano, 2013; Peng et al., 2015) or by
fixed wing platforms capable of long-range flight but that require
considerable resources to deploy (Ramana et al., 2007; Corrigan
et al., 2008; de Boer et al., 2016). The greatest limitation to multi-
rotor UAS is often the battery technology, which determines the
flight time and therefore distance and altitude (flight envelope).
The use of fixed wing UAS can increase the flight time for a
given payload and Maximum Take-Off Weight (MTOW), but
with additional challenges in terms of launch and recovery,
particularly in remote locations and vegetated/mountainous
terrain typical of volcanic environments.

In volcanology, remote measurements using UAS now enable
the collection of scientific data in previously inaccessible volcanic
plumes (McGonigle et al., 2008; Shinohara, 2013; Di Stefano et al.,
2018; Liu et al., 2019), or where large areal coverage is required
(Darmawan et al., 2018; Favalli et al., 2018), whilst prioritizing the
safety of the operator. To this end, aerial observations are now
becoming integrated routinely within volcanic crisis response
procedures (Turner et al., 2017; Nadeau et al., 2018; de Moor
et al., 2019; Syahbana et al., 2019). Notably, most volcanological
operations are typically conducted within Visual Line Of Sight
(VLOS) and at relatively low altitudes. Critically, however, there
remain significant gaps in our knowledge of some of the most
active, yet inaccessible, volcanoes where Beyond Visual Line Of
Sight (BVLOS) operations are the only way to obtain the data
required (Schellenberg et al., 2019; Syahbana et al., 2019; Liu et al.,
2020). Here, we focus on BVLOS operations at Manam volcano,
Papua New Guinea, in the context of an international scientific
effort to characterize the chemistry of the volcanic gases being
released from this globally significant volcanic emission source.

Specifically, we present a detailed account and analysis of
the platform development (“Titan” SUAS) and the operational
procedures needed to realize safe and repeatable operations
to an altitude of 2,300 m Above Mean Sea Level (AMSL)
and a horizontal distance of 5 km from the take-off point.
We analyse logged flight data for three flights to explore
parameters related to aircraft performance, turbulence within
the volcanic plume, and energy budgets. Although scientific data
were collected from all three flights, we critically evaluate the
event sequence that resulted in loss of the airframe during the
third flight. Through the lessons learned and insights into plume
conditions presented, our results will contribute to the continued
development and operation of robust fixed wing sensor platforms
for the volcanological community, and in extreme environments
more generally.

1.1. Motivation
Measurements of volcanic gases are critical for the assessment
of volcanic hazard (Aiuppa et al., 2007; de Moor et al., 2016,

2019) and for constraining global emissions of environmentally-
important gases, such as carbon dioxide (Aiuppa et al., 2019;
Fischer et al., 2019; Werner et al., 2019). Volcanic environments
present challenging environments in which to make scientific
measurements, particularly at high altitude, densely vegetated,
or highly active volcanoes. These sampling limitations have
led to significant bias in estimates of global volcanic gas
emissions toward a relatively small number of accessible,
passively degassing volcanoes (Fischer and Aiuppa, 2020). By
enabling proximal sampling of remote or hazardously accessible
volcanic plumes, instrumented UAS are now targeting gaps in
our knowledge of gas emissions at some of the major remaining
“known unknown” volcanic emitters.

Manam (Figure 1) is one of the most active volcanoes in
Papua New Guinea (Palfreyman and Cooke, 1976), and has
experienced five major eruptions in the past year alone (GVP,
2019). A series of climactic eruptions in 2004 devastated large
sectors of the island and displaced the local population to the
mainland. Mild to moderate explosive activity has continued
sporadically at Manam since the 2004–2006 eruptions, causing
continued social and environmental disruption (Mercer and
Kelman, 2010). In a broader context, Manam is a globally-
significant source of sulfur dioxide to the atmosphere (Carn
et al., 2017) as measured by satellites, and yet its carbon
dioxide emissions are previously uncharacterized. Aerial-based
Observations of Volcanic Emissions (ABOVE), of which this
study is a part, is an internationally-collaborative and cross-
disciplinary endeavor to integrate novel UAS technology with
state-of-the-art gas sensing instrumentation to improve our
ability to measure the gas chemistry and emission rate at remote
and inaccessible volcanoes, such as Manam. In this contribution,
we focus on the engineering and control required to achieve
long-range, high altitude fixed wing flights through the volcanic
plume. The resulting scientific data are presented in a companion
publication (Liu et al., 2020).

The requirements of volcanic plume intersection, at long-
range or otherwise, present considerable challenges in terms
of both hardware engineering and flight control. Volcanic
plumes are energetic and thermally-buoyant mixtures of gas and
(sometimes) ash particles, which are often emitted in a pulsatory
manner (Woods, 2010). In the case of Manam, the plume can
rise to altitudes of several kilometers above the vent under its
own thermal energy before dispersing laterally with the wind (Liu
et al., 2020). Yet, our knowledge of the conditions encountered
within a volcanic plume is incomplete, leading to considerable
uncertainty when designing an appropriate air frame and optimal
flight path. To achieve plume intersection, we developed an
instrumented fixed wing (7.5 kg UAS, hereafter referred to as
the “Titan” aircraft). The Titan system is capable of carrying a
payload of 1 kg up to an altitude of 2300m ASL, for a distance
of more than 10 km. The aircraft is also capable of a hand
launch in zero wind, which combined with a parachute recovery
makes it ideal for operation in rough terrain, or areas with very
little flat ground for a conventional landing. Quad-plane type
airframes can also operate under these conditions, but typically
lack the required performance for long range missions with large
ascent requirements.
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FIGURE 1 | (a) Satellite view of Manam with a visible plume drifting North-West. (b) Manam volcano is located on the Northern coast of mainland Papua new Guinea.

(c) Each mission required flying to the summit from a small satellite cone located 4.3 km from the summit crater, near the village of Baliau. Note the satellite image has

been overlayed with contour lines indicating the steep terrain. (d) A clear view of Manam volcano from the approach by boat.

By analyzing flight data from two successful flights at
Manam, we present novel insight into the atmospheric
conditions and the resulting airframe stresses encountered
within the extreme environment of the plume of an active
volcano. Further, by reconstructing the sequence of events
that led to the failure of the third flight, we identify
a number of lessons learned and propose appropriate
recommendations for future flight operations and aircraft
design requirements.

1.2. Manam Volcano (Papua New Guinea)
Manam volcano is located 13 km off the northern coast of
mainland Papua New Guinea (Figure 1b). Most of the volcano is
submerged but the exposed sub-aerial part of the volcanic edifice
forms an island ∼10 km in diameter. Current volcanic activity
involves persistent passive gas release, punctuated by occasional
large explosive eruptions (GVP, 2019). A distinctive gas plume

is often visible from both the ground and space (Figure 1a).
With an almost equatorial latitude, the climate is tropical with
temperatures of ∼30 ◦C and frequent rainfall. The flanks of the
volcano are often obscured by cloud, especially from latemorning
through to mid-afternoon, although the summit can be clear
above the cloud level.

The topography of the island is generally mountainous with
small patches of level ground near the coast. The flanks of
the volcano are densely vegetated and incised by four radial
avalanche valleys (Figure 1c) that channel debris flows during
large eruptions. The summit altitude is 1,807 m AMSL (GVP,
2019). A small volcanic cone (known locally by the name
“Godagi”) is located on the northern coast of the island, and has a
summit altitude of 200m AMSL. We selected Godagi cone as the
base for fixed-wing operations due to its prominent topographic
position, clear lines of sight in all direction unobscured by
vegetation, and the altitude advantage. We identified an area of

Frontiers in Robotics and AI | www.frontiersin.org 3 October 2020 | Volume 7 | Article 54971666

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Wood et al. UAS Operations in Volcanic Plumes

FIGURE 2 | (a) The “Titan” fixed-wing UAS. The radio frequency transmitters have been positioned as separated as possible to ensure clear transmissions without

blocking from the fuselage or interference. (b) The multi-species gas sensor unit. The sensor was additionally shielded with metal foil (not shown) when installed in the

fuselage to prevent interference from the vehicle RF transmitters.

tall grass ∼10 × 10m square as an appropriate landing zone for
parachute recovery.

2. INSTRUMENTS AND METHODS

2.1. Titan SUAS
The fixed wing platform chosen for this project was the so called
“Titan” —a twin-propeller, v-tail vehicle based upon the airframe
kit of the same name (Figure 2a). A full list of avionics and
specifications is given in Table 1. The aircraft has a wingspan of
2.1m and a take-off weight of 8.5 kg (including 1 kg payload).
This particular system was advantageous because it could be
hand-launched and recovered by parachute into confined areas
where a “skid” landing would have been impossible. The twin
propeller design allowed for the installation of oversized motors
which are essential to achieve acceptable climb rates. Power
was provided by a 12.75A h, 6S 22.2V lithium polymer (LiPo)
battery set (comprising three 4.25A h to allow for international
travel), giving a flight duration of 25–35 min depending on each
mission’s altitude-gain and airspeed requirements—nominally
2,100 m above takeoff, and 18m s−1 equivalent air speed (EAS).
The maximum thrust was measured in the laboratory to be 7 kg,
hence the vehicle in this configuration had a thrust to weight of
82%. This was essential for the hand launch and to ensure the
motors were operating at a sustainable power of ∼40% during
the long climbs.

The Titan featured a full autopilot flight computer with
supporting sensors (GNSS, barometric altitude, airspeed
indicator, and IMU). Running the open source ArduPlane
software, the autopilot was capable of navigating the aircraft
along pre-planned waypoint missions. Three wireless links
were used to interact with the vehicle during flight. The pilot
safety link, operating on the 433MHz frequency, was used for
initializing the automatic flight and for manual control during

the plume intersections and parachute landing. The second link
was a bi-directional telemetry modem operating on the 868MHz
frequency and was used for monitoring flight statistics, to issue
updated commands to the autopilot, and also relay live gas
concentration measurements to the ground station. The third
link was a live first-person-video (FPV) stream from a camera in
the nose of the aircraft operating on the 2.4GHz frequency. The
interconnection of the avionics systems is shown in Figure 3.

There are three internal cabins within the body of the “Titan.”
The first is the fuselage, which housed the control systems and
batteries. The second is the payload bay, which contained the
gas sensor and a downwards-orientated camera. The final cabin,
located toward the tail of the aircraft, contained the parachute
landing system and video transmitter.

The autopilot logged flight data at frequencies between
10 and 50Hz, including signals, such as altitude, airspeed,
orientation, servo commands, and GPS location. A reduced
rate version of these signals is telemetered to the ground
control station where they are also stored. Both the high-
fidelity onboard and low-fidelity ground station logs can be
analyzed post-flight alongside the recorded videos. These log
files are often overlooked at the end of a successful mission,
however they provide a rich source of additional information
when analyzed more thoroughly. In section 4, we extract
selected signals for detailed analysis to inform future UAS
design requirements.

The ground station comprised receivers for the telemetry and
video links, a laptop, a display screen, and pilot controller. The
telemetry data are received, decoded, and displayed, with the
live gas concentration data shown in a custom application. The
live video is displayed and recorded on a handheld monitor
screen. All items are battery-powered and portable. During
flight, live data streams of parameters, such as battery voltage,
airspeed, GPS-location, and gas concentration were monitored
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by the operation crew, which included a pilot, co-pilot, and
payload specialist. The pilot held the safety link controller, which
was used to trigger mode changes, deploy the parachute, and
maneuver the aircraft manually whilst in Fly By Wire (FBW)
mode. When maneuvering manually at ranges beyond visual

TABLE 1 | Parts list for the “Titan” aircraft.

Spec./Part Details

Maximum flight time 1 h (100m ascent), 30 min (2,000 m ascent)

Take-off mass 8.5 kg

Wingspan 2,160 mm

Airframe Skywalker Titan (China)

Battery (×3) Overlander Supersport Pro 22.2V 4250mAh 35

C (UK)

Main Motors (×2) AXi 2826/13 v2 (Czech Republic)

Speed Controllers (×2) (ESC) Jeti Spin Pro 66 OPTO (Czech Republic)

AutoPilot UnmannedTech Pixhawk v1 (UK)

Autopilot Software ArduPlane V3.9.7

Propellers (×2) APC-E 12 × 6 Thin Electric (USA)

All Servos (×5) Hitec HS-5065MG Digital (Japan)

Safety (Pilot) control link DragonLink V3 Advanced (433MHz) (USA)

Ground telemetry link RFD 868x (868MHz) (Australia)

FPV link ImmersionRC 700mW (2.4GHz) (Hong Kong)

FPV Camera RunCam Eagle 2 Pro (Hong Kong)

Parachute Skywalker Landing Umbrella 8 kg (China)

Companion computer PJRC Teensy 3.6 micro-controller (USA)

line of sight, the pilot used a video headset to view the First
Person View (FPV) stream and direct the aircraft. The co-pilot
monitored the vehicle telemetry data, verbally relaying essential
flight data to the pilot for situational awareness, and, whenever
necessary, adjusted mission parameters under instruction from
the pilot. The payload specialist monitored the telemetered gas
concentration data and FPV video, providing guidance on the
quality of the data collected and suggesting modifications to the
flight path based on the incoming data. Decisions to deviate from
the pre-planned mission were agreed by all crew before they
were executed.

The payload comprised twominiature high definition cameras
and a multi-component gas analyser system (multi-GAS). Two
4K video cameras (120 g each) were installed in the vehicle: one
in the nose with a forward view and one in the payload bay
with a nadir view. The multi-GAS is a miniaturized version
of the established ground-based volcanic monitoring system
developed by the University of Palermo-INGV (Aiuppa et al.,
2007); (Figure 2b) and described in (Liu et al., 2019). The
multi-GAS unit has dimensions of 150 × 130 × 90mm and a
weight of 550 g. Air is sampled from outside the fuselage and
passed through a filter, two electro-chemical sensors (SO2, H2S),
and a NDIR sensor (CO2) before being expelled back into the
freestream airflow. A separate pressure, temperature, and relative
humidity sensor was also mounted on the exterior of the airframe
to measure the air conditions. All payload data is stored on
micro-SD cards, with the gas measurement data additionally
telemetered to the ground station using an onboard companion
computer to interpret and forward the essential values.

FIGURE 3 | Interconnection of the UAS sub-systems. Live sensor data is relayed from the sensors, via the companion computer, autopilot, and ground station before

being displayed live to allow guidance during FBW flight segments.
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FIGURE 4 | The mission profile comprised a zig-zag ascent, level flight during the plume interceptions, and a spiral descent.

2.2. Flight Planning and Deployment
Flight operations included both automatic and manual flight
segments. Initially, each mission was pre-programmed as a series
of 3D waypoints based upon visual observations and coordinates
taken from a high-accuracy digital elevation model (WorldDEM
provided by Airbus Defense and Space GmbH). For reference, the
coordinates of the take-off location and summit were [−4.0407N,
145.0356E] and [−4.0776N, 145.0384E], respectively, which are
separated by ∼4.3 km horizontal distance and 1600m vertical
ascent. The Titan has a proven performance history for long-
range missions having previously been deployed for low altitude
survey missions where a flight duration of 1 h was achieved with
a similar payload mass (Connor et al., 2020). Here, the expected
flight duration was reduced to ∼30min to accommodate the
increased power consumption during the initial climb flight
segment. A typical volcanic gas sensing mission is shown in
Figure 4.

The flight segments were:

1. Automatic take-off: The vehicle is hand-launched, during
which the auto-pilot keeps the wings level and the vehicle at
full thrust until an ascent threshold of 15m is achieved. At this
point the aircraft has achieved cruising air-speed and begins
the waypoint mission.

2. Main ascent: The auto-pilot guides the aircraft along a series
of large “zig-zag” ramps. The ramp angle is set in the range
10–13◦ which is an acceptable indefinite motor load (<50%
throttle, 40A) for the hardware chosen. The final waypoint of
the ascent is set at the desired plume intercept altitude, and
has a horizontal offset of at least 1 km from the summit to
ensure the aircraft enters a steady straight and level fight clear
of any terrain. The summit overflight altitude is planned very
conservatively to minimize risks due to inaccuracies in terrain
data or poor weather conditions.

3. Plume Intercept: there are two options:

(a) Automatic: If the pre-programmed mission successfully
intercepts the plume, the auto-pilot is left in automatic
mode (hereinafter referred to as AUTO) to perform a series
of back-and-forth transects. Successful plume interception

is identified in real-time by a rise in SO2 concentrations,
which are monitored at the ground station.

(b) Manual: If the vehicle fails to intercept the plume, the
pilot can choose to take manual control of the aircraft with
fly-by-wire mode (hereinafter referred to as FBW), using
the live video stream from the forward facing camera to
visually direct the vehicle toward the plume. Essential flight
statistics (airspeed and altitude) are relayed to the pilot by
the ground station operators.

4. Descent: After the plume transects are completed or a low-
battery threshold is reached, whichever occurs first, automatic
flight is resumed for the descent. The descent profile is a
large spiral path (Figure 4) to an altitude of 60m above
the landing point. The vehicle then circles the landing
point indefinitely until the pilot resumes control. In this
environment, the decent can be as steep as required since the
power requirements areminimal, however, must still be within
the stable flight envelope.

5. Landing: The vehicle is recovered using a deployable
parachute. Due to inaccuracies in GNSS positioning and drift
of the barometric altimeter, this process is flown manually by
the pilot who aligns the vehicle over the landing zone (flying
upwind), cuts the throttle (to avoid the lines being caught in
the propellers), and triggers the parachute release. The descent
rate is ∼5m s−1 until touchdown and the airframe is sturdy
enough to width-stand impact on hard ground.

Full permissions were issued by the Civil Aviation Safety
Authority of Papua New Guinea (CASA PNG) with exemptions
issued for Beyond Visual Line of Sight (BVLOS) operations
at altitudes above the summit height. A Notice to Airmen
(NOTAM) was also in place during the entire expedition
period to ensure other airspace users were aware UAS
were operating.

3. RESULTS

Three BVLOS flights over the summit were conducted: one
(flight A) on 22 May 2019 and two (flights B and C) on 23
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FIGURE 5 | (A–C) The three flight paths colored by SO2 concentrations. Note how the highest SO2 concentrations change location near the summit due to varying

wind conditions. (D) The changing flight modes for flight B with AUTO (takeoff, ascent) and FBW (plume intercept, landing).

May 2019 (see Table 2). The timings of the flights were in
part dictated by when the summit was clear of meteorological
cloud—generally either morning, or late afternoon. All flights
had pre-planned waypoint missions with a maximum altitude of
2,100 m above the take-off location and a path directly over the
summit. This altitude was chosen to place the vehicle ∼600m
above the summit, as the buoyant plume typically ascended
vertically for several kilometers before dispersing laterally with
the wind.

The complete flight paths and measured SO2 values are
shown in Figures 5A–C. Non-zero SO2 values are an indicator
of plume interception, due the negligible concentrations in the
background atmosphere. During flight A, the vehicle remained
in AUTO during the plume transects. The plume was near-
vertical at this time, so the flight intercepted the central
region of the plume twice. For flight B, the pilot partially
used FBW to more accurately penetrate the densest part of
the plume for several transects before returning to AUTO
for the descent (Figure 5D). The plume was slightly inclined

TABLE 2 | Details of the three flights.

Flight # A B C

Date 22-05-2019 23-05-2019 23-05-2019

Local time in PNG (hh:mm) 16:49 09:17 11:48

Duration (mm:ss) 19:58 28:29 12:38

Battery consumption (mAh) 6,510 8,940 5,190

Notes Auto plume

intercept

Manual plume

intercept

Vehicle lost

with the wind at this time, meaning the automatic flight
path passed tangentially to the plume position. Similarly, FBW
was used again during flight C. In this case, however, a
failure occurred during the transect and the vehicle was not
recovered (section 4.3).

In section 4, we interrogate the autopilot log files to (a)
quantify the plume aerodynamic conditions, (b) calculate the
energy of the plume up-draft, and (c) decipher the events that
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FIGURE 6 | (A) The body Z axis accelerations during Flight A. Note the difference in turbulence experienced by the aircraft as it encounters the various air conditions.

(B) The roll and pitch deviations calculated as the difference between the orientation and its target. Larger values indicate the vehicle has been perturbed further from

its trimmed condition.

led to the loss of the vehicle. For flights A and B, the full-rate log
files were downloaded shortly after landing. For flight C, however,
only the lower fidelity ground station telemetry log is available.

4. ANALYSIS AND DISCUSSION

4.1. Plume Conditions
Visual observations and theory predict that the conditions within
a volcanic plume will be more turbulent than free air, however
few data relating to quantification of these conditions exist. Here,
we analyse the on-board autopilot sensors to interrogate the
plume conditions encountered during flight A in detail.

The body frame accelerations provide a good indication
of the conditions the vehicle was experiencing. During the
summit overpass in Flight A the vehicle experienced several
different air conditions, each characterized by distinctive Z
(vertical) axis accelerations. The various segments have been
determined by judgement, however the sharp rise in SO2 also
gives an indication of the main volcanic plume boundaries.

Alternatively, methods to automatically determine the plume
interception could be applied (Schellenberg et al., 2019).
Figure 6A shows time series data for body accelerations during
the summit overpass and has been labeled with the various
air conditions encountered. A 5Hz low-pass filter has been
applied to remove high frequency noise. Specifically, we filter
the data to ensure the accelerations are representative of the
whole body accelerations rather than the small motions of
the autopilot module on its flexible vibration isolation mount.
The vehicle was in a state of straight and level flight (“level”;
Figure 6A) for ∼44 s, and during this time encountered a
maximum acceleration of 0.82m s−2 with a standard deviation
of 0.23m s−2. Prior to and following plume interception, the
aircraft passed through meteorological cloud surrounding the
summit (“met cloud”; Figure 6A). In total, the vehicle was in the
met cloud state for ∼78 s, encountered a maximum acceleration
of 11.7m s−2 and a greater standard deviation of 1.88m s−2

compared to level flight. The two plume traverses (“plume”;
Figure 6A) are delimited by a step change in the magnitude
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of the body accelerations encountered. The vehicle was inside
the volcanic plume for ∼22 s, during which the maximum
vertical acceleration was∼25.1m s−2. This acceleration translates
to effectively a 2.5G (where hereinafter G refers to g-force)
additional loading once the offset of gravity (local gravity
assumed to be 9.77m s−2) has been accounted for, and the
standard deviation increases to 6.89m s−2. Following the first
plume traverse, the vehicle entered a turning phase, which
involves a wide 180◦ turn to reverse the flight path. The
turn segment is not analyzed in detail since the aircraft was
maneuvering actively, hence larger accelerations than level flight
are expected.

We also consider the deviation of the body angles away from
straight and level flight as a further indicator of plume conditions.
Figure 6B shows the time series of the errors, where greater angle
deviations represents larger differences in either pitch or roll
from the target orientation. For roll this will be wings level, and
for pitch it will be the cruise trim attitude. Again, we observe
changes in the characteristic of both signals as the aircraft enters
the different air masses described above. The pitch is controlled
by the autopilot in order to return to the correct altitude,
hence is expected to vary when passing though the plume, but
the only cause for the roll deviations is turbulence. The roll
deviations are 1–2◦ in clean air, 5–10◦ in meteorological cloud,
and up to 25◦ in the plume. If vehicle was already turning at its
maximum 35◦ FBW bank angle when a gust hit, it could force
the aircraft into a 60◦ roll angle, which is outside of the tested
flight envelope.

Based on the accelerations and attitude deviations observed,
the vehicle is using a significant portion of its flight envelope
to remain on course. Any maneuvering during a plume
transect could add additional loads that move the air-frame
and control algorithm outside of the tested flight envelope
where failure might occur more easily. It is recommended
that all plume transects are in straight lines with turns
outside the plume boundaries to ensure the maximum
stability and strength margins are available for the most
turbulent plumes.

4.2. Energy From Plume
The thermally buoyant plume can be considered a source of
additional energy to maintain flight. During flight A and B, the
aircraft gained altitude when passing through the ascending air
mass above the summit vent. To quantify the energy “gained”
during the plume traverses we evaluate the total energy deviation
of the aircraft, including the sum of the potential and kinetic
energy deviations from the expected cruise conditions, and the
energy not used by the propulsion system.

The potential energy deviation, Ep, was calculated by from the
difference between the current height h above the target altitude
hC, hence:

Ep = mg
(

h− hC
)

(1)

The kinetic energy deviation, Ek, is calculated as the difference
between the energy at cruise speed (VC) and the current
airspeed (VT). Note the altitude-adjusted true air-speed (TAS)

is used since this is the speed of the vehicle relative to the
air-mass (Jimenez et al., 2017).

Ek =
1

2
m

(

V2
T − V2

C

)

(2)

We also account for the energy consumed by the motors, since
any increase in altitude or speed may be due to increased
thrust and not plume buoyancy. The power consumed (or not
consumed) by the motors is calculated from the measured
current (Ap) and voltage (Vp). By integrating the difference
between the current power consumption and a cruise power
condition (PC), we can compare this parameter directly to the
potential and kinetic energies derived above. The cruise power
condition is found by averaging the power consumption during
straight and level flight segments outside of the plume. The
integral is taken over the time period (t1) to (t2) (annotated on
Figure 8), corresponding to a subsection of the total flight from
when the aircraft has finished the ascent to immediately before
the descent commences.

Em =

∫ t2

t1

[(

VpAp

)

− PC
]

dt (3)

Auto mode was engaged during plume traverses, during which
the flight computer attempts to maintain course, speed, and
altitude. Figure 7 shows time series data for altitude, throttle,
airspeed, and pitch on a common time axis for the first transect.
Airspeed is maintained at ∼20m s−1 TAS and the throttle is
cut to zero (indicated by a PWM value of 1,100) whilst the
autopilot demands a nose down pitch at the maximum FBW
angle of −25◦. Yet, despite the autopilot response, the vehicle
still ascends by∼45m above the target altitude, therefore gaining
energy in a similar manner to a glider loitering in a thermal.
Once the vehicle emerges from the plume and returns to less
turbulent air, the autopilot energy control algorithm successfully
returns the aircraft to cruise at the set speed and altitude. This
is apparent from Figure 8A, where the potential and kinetic
energy of the aircraft return to the outside of plume value.
The reduction in throttle, however, was significant during the
transect with the main motors stopped allowing the aircraft to
briefly glide. Even with the varying throttle commands, when
the total power consumption deviation is integrated over the
time interval, there is an overall reduction of energy consumed
compared to that consumed if the aircraft had flown in clean
air. Figure 8B shows the power consumed and a cumulative
integral of the difference between the current power and assumed
cruise power of PC = 420W. The final value of the integration
is Em = −1, 015 mWh where the negative sign indicates an
energy saving. This method is sensitive to the selected value
of PC, therefore the integral was also calculated for PC =

420 ± 2% resulting in Em = −1, 015 ± 394 mWh. This
equates to 44mAh battery capacity with an assumed 22.5V
battery voltage.

Although the energy saved is only a small proportion
of the total energy consumed, this evaluation demonstrates
quantitatively the potential to harvest energy from a volcanic
plume. Optimization of the autopilot response and mission
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FIGURE 7 | Time series of (A) altitude and airspeed, and (B) throttle and pitch, with a common time axis as the vehicle encountered the rising plume. Due to the hot

rising buoyant plume air mass, the vehicle gains altitude despite reducing throttle to zero and orientating nose down with a negative pitch angle.

plan could increase further the energy saved, and therefore the
harvesting potential. For example, the steep pitch down attitude
used to return the vehicle to the set point altitude will have placed
the aircraft in an unfavorable aerodynamic state with increased
drag losses wasting the potential gains. Also, the turning segment
of the flight was planned conservatively, meaning the aircraft
could have turned earlier and thereby reduced the time spend
outside the buoyant plume. The aircraft is within the plume
for 10 s on the first pass and 12 s on the second (Figure 6),
which, with a true airspeed of 20.8m s−1, equates to a plume
width of between 208 and 242 m. The Titan aircraft has a
tightest turning circle of 120m, therefore it may be possible
to loiter within the bounds of the buoyant plume indefinitely.
Extending the time spent within the plume is critical to the
scientific application (i.e., volcanic gas measurements), where
the associated uncertainties are for the most part related to
the measurement duration. Differences in sensor response times
between gas species introduce uncertainty for derived gas ratios
for ground-based measurements (e.g., Roberts et al., 2017), and
this effect is amplified for UAS-mounted instruments due to
the comparatively short measurement periods (Liu et al., 2019).
Response times, in the form of the T90 rise time (the time
required for the sensor to equilibrate to 90%, when exposed to
a step change in concentration), are generally on the order of
tens of seconds for both the electrochemical and NDIR sensors
used here. During plume traverses also on the order of tens of
seconds, sensors may not have time to approach equilibrium,

thus resulting in a signal that is truncated in amplitude
relative to the true signal. Harvesting the thermal energy from
the plume to extend flight endurance is a critical avenue
for future research, and is especially relevant to long-range
BVLOS operations.

Flight B has not been analyzed by the same method because
the plume transects were not obvious. This was due to the
auto mode missing the dense plume on the first pass and the
subsequent FBW mode, which produced a more erratic flight
path. The increased time spent intercepting the plume causes the
power analysis integral analysis to becomes even more sensitive
to the assumed value of PC. This increases the errors to an
unacceptable magnitude to be confident in drawing conclusions
from the data.

4.3. Loss of Aircraft
An aircraft was lost during flight C, unfortunately. By analyzing
the ground station telemetry logs, we infer the potential cause of
failure, in particular, the conditions encountered in the volcanic
plume and the order of events. The conclusions presented are
somewhat speculative due to the limited data available, however
the identified lessons learnt are still valuable for planning future
operations and setting requirements for future airframe designs.

We initiated flight C as soon as possible following the
successful landing of the previous flight to ensure comparable
cloud conditions over the summit. Turn around time was 1 h,
with tasks including downloading the sensor data files, swapping
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FIGURE 8 | (A) The kinetic and potential energy are almost equal before and after the plume transect because the autopilot corrected errors in speed and altitude.

However, less electrical energy was consumed due to the plume updraft. (B) By integrating the power consumed during the plume transect period, we can calculate

the battery energy “saved” in mWh. The effect of small variations (±2%) in the nominal cruise power, PC, are shown by the dashed and dotted lines, respectively in

(B), which indicate the method is sensitive to this value.

battery packs, repacking the parachute, and completing all pre-
flight checklists. Visually, plume conditions did not appear to
change between the two flights.

The flight began with an ascent profile and plume approach
identical to the previous flights (Figures 5A,B). After passing
tangentially to the plume during the first traverse, as in flight
B, FBW mode was engaged to guide the direction of the
aircraft into the densest region of the plume. However, on re-
entering the plume after the first manual turn, there was a
catastrophic event that triggered the sequence that ultimately
led to the loss of the vehicle. Referring to Figure 9 and
Table 3, we highlight key indicators that reveal the sequence
of events.

Although the vehicle was not in a trimmed level flight
condition, it was also not in a dangerous maneuver at the time
of the event. We therefore suggest that the loss was caused
by a sudden, high magnitude, change in external conditions.
Real-time SO2 concentrations exceeded 30 ppm immediately
prior to the failure (Figure 5C), and therefore we confidently
conclude that the aircraft had entered the main region of the
plume column. In light of this, the most likely cause of the
large vertical acceleration is an energetic up-draft of thermally-
buoyant gas from the main volcanic vent. Nadir images from a

summit overpass during flight A confirm the presence of shallow
magma within the vent crater (Liu et al., 2020). Further, visual
observations throughout the field deployment indicate that gas
was emitted from the vent in a pulsatory manner, with sporadic
pulses of fast-ascending gas superimposed on a background
stable emission. At volcanoes where the magma viscosity is
sufficiently low to allow decoupling between rising gas bubbles
and the magma (as is the case at Manam), outgassing takes place
either passively, where gas simply exsolves from the surface of the
magma body, or actively, where large bubbles of overpressured
gas burst more explosively at the surface (e.g., Edmonds, 2008;
Tamburello et al., 2012). Pulsatory gas emissions are common to
many volcanoes; the time scale of the periodicity reflects the fluid
dynamics that govern gas bubble ascent (Pering et al., 2019). At
Manam, the pulses of energetic, thermally-buoyant gas associated
with active outgassing would have generated transient conditions
of extreme turbulence within the plume column. We propose
that entering one of these up-drafts over-stressed the airframe
and ultimately resulted in the loss of either a wing-tip or one
of the V-tail stabilizers. The loss of either component would
generate significantly unbalanced aerodynamic forces, consistent
with the rapid rotations indicated by roll and yaw rates. The video
link continued transmission for a significant time after the loss
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FIGURE 9 | Indicative signals from the telemetry log file of flight C for the final 20 s of transmission. Signals (A) airspeed and air pressure, (B) roll angle and aileron

input command, (C) vertical acceleration and altitude, and (D) roll, pitch, and yaw angular rates, have been plotted against a common time-axis. A catastrophic event

occurs at 867 s followed by a rapid (>1Hz) spin. See Table 3 for further details of the order of events.

TABLE 3 | Summary of the sequence of events that led to loss of the vehicle during flight C. Time is reported relative to takeoff time and is equivalent to Figure 9.

Time (s) Event

1. 858.0–865.0 Vehicle finished a relatively high speed (23ms−1) turn and was returning toward wings level.

2. 865.0 Due to the higher airspeed, the aircraft climbed ∼40m above the cruise set-point, but was near level in pitch orientation.

3. 865.0–867.0 In the 2 s period immediately before the event, the vehicle increased in speed to 26ms−1 due to a high throttle command.

4. 865.8 At this point the vehicle experienced a sudden ∼7G upwards acceleration (71ms−2) and started to roll rapidly at a rate of

100◦ s−1. The hypothesis is that at this point the aircraft experienced a significant up-draft from the main volcanic vent. The

aileron moves to oppose the motion, but does not have a significant effect.

5. 867.0 There are several indicators of a catastrophic event. The body vertical acceleration suddenly changed sign and magnitude

to ∼11G (-113ms−2). There is also a sudden change in static air pressure, and an abrupt reversal in roll rate.

6. 867–868 Very rapid yaw rate develops indicating a flat spin. Observations from the live video link also confirmed the vehicle was no

longer maintaining orientation.

7. 867–877 The main telemetry link was lost 10 s after the event. The vehicle was still high above the summit at this time and falling at
∼11ms−1. The aircraft’s altitude was still high enough for a clear line of sight hence the loss of telemetry is thought to be

due to the aircraft breaking up. In this case, we suggest the loss of a wing containing the telemetry module.

of telemetry, suggesting multiple stages of failure following the
initial event.

From this investigation we present recommendations for the
required aircraft strength based upon the loading encountered.
The ∼7G up-gust was the most likely cause of failure, therefore

applying a reserve factor of 2 produces a requirement of
14G upwards load. A reserve factor of 2 is greater than the
typical 1.5 used within aerospace design processes, however
there are very limited data available quantifying volcanic plume
conditions, hence a greater reserve margin is preferred. The
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TABLE 4 | Recommended design requirements for fixed-wing UAS, applied to volcanic plume measurements.

Requirement Description

Payload capacity Minimum 1kg to accommodate high sensitivity instrumentation and appropriate shielding. With careful design iterations a sensor mass might

be minimized below this value, however this is a general starting recommendation for airframes of this size.

Ascent capability Minimum 500m above the summit height. This allows for conservative flight planning and also mitigates potential variations in the height

requirements. The exact height of a volcanic summit might be unknown, or the activity may have modified the summit topography since the

most recent survey. Variations in air density due to weather might also reduce the maximum ascent capability of a vehicle.

Airframe strength 14G. This value was determined from the conditions encountered in Flight C including a reserve factor of 2 applied. Structural strengthening

should be applied to areas of load concentration, such as the main wing, and where control surfaces attach to the fuselage.

Airspeed capability Minimum 20ms−1. A reduced airspeed could be advantageous to allow the aircraft to pass through the plume more slowly and therefore

collect more data points. However, strong, topographically-enhanced winds can occur around prominent volcanic peaks, hence the top speed

of the vehicle must be fast enough to overcome these. Note that the windspeed measured at the takeoff location can often be lower than that

encountered at plume altitude.

Structure At least partial sealing to minimize airflow over the flight avionics. Volcanic plumes contain acidic gases at high humidity, which cause corrosion

and failure of electronics. Sealed enclosures may not be possible for components requiring airflow cooling (e.g., main motors), so these items

should be inspected regularly.

Flight control modes Automatic for large ascents to maintain optimal trim conditions, but with a visually-guided (First Person View; FPV) Fly By Wire option to make

course modifications that ensure plume interception, as necessary. Once the aircraft is more than 500m away from the pilot, it is unlikely they

will be able to operate using eyesight alone. Augmenting the pilot situational awareness via FPV and flight telemetry data is important for

accurate maneuvers and rapid response to unexpected situations.

Maximum roll angle The maximum roll angle has a direct impact on the structural loading during turn maneuvers. By reducing the maximum roll angle, the loads

created during maneuvers can be reduced, leaving a greater strength margin for unexpected turbulence-based loads. However, a reduction

below <20◦ would compromise the handling qualities for manual flight control, hence a balance must be found. It is also recommended that

plume transects only be attempted when in straight and level flight. For the Titan aircraft, the AUTO and FBW flight modes were set with a

maximum roll angle of 45◦.

downward load can be more conservative since the aircraft is
not expected to be flown inverted or have significant down-
gusts. The speed of the aircraft was within the range of values
under which the vehicle had been tested, however the additional
wing loading from such high speeds would have reduced the
structural strength reserve. Consequently, a second operational
recommendation is a more advanced FBW control system that
maintains altitude and speed, but allows the pilot to “drive” the
aircraft’s direction.

Key recommended design criteria have been summarized in
Table 4. These criteria are based upon the numerical values
derived during the above analysis, the vehicle setup parameters,
and from experimental field experience.

5. CONCLUSION

Volcanic environments present many challenges for aerial
robotics, from the vehicle design through flight planning
to the conditions encountered during the flight itself. Yet,
despite these obstacles, instrumented UAS are stimulating
transformative advances in volcanological research, motivating
further engineering development to respond to these challenges.
Here, we describe a series of fixed-wing flights BVLOS over
the summit of Manam volcano, Papua New Guinea, to measure
real-time gas concentrations within the volcanic plume. Our
aim was to collect data that would constrain the emission rate
of environmentally-important volcanic gases, such as carbon
dioxide. However, the insights contributed by this study are also
relevant more generally to other plume sampling applications.
Specifically, we show that (a) the “Titan” aircraft is a versatile

aircraft suited to BVLOS missions in difficult terrain; (b) an
air frame can reasonably expect to be subjected to a 2.5G
loading when traversing a thermally-buoyant volcanic plume,
and that this may increase to 7G in more extreme, but transient,
cases; and (c) energy harvesting from the volcanic plume
presents a tractable means to enhance flight endurance, and thus
extend the duration of scientific measurements. We describe
the physical parameters and propulsion systems used in our
aircraft design at a level of detail sufficient to guide future air
craft design, and recommend that vehicles are strength tested
up to 14G to ensure a factor of 2 reserve against the upper
end-member condition. Further, for large plumes, such as that
encountered at Manam, the flight path could be optimized to
ensure maximum additional energy gain. From on-board flight
parameters, we reconstruct the sequence of events that ultimately
led to catastrophic vehicle failure and attribute the cause of
failure to interaction with an energetic thermal updraft from
the main volcanic vent, which is a prevalent characteristic of
outgassing at similar volcanoes globally and therefore needs to
be taken into account during full systems testing. If recent trends
continue, scientific applications will increasing look to aerial
robotics to enable sensor placement in hazardous environments.
The large spatial scales and shifting targets involved (i.e., the
plume is in constant motion, vertically and often horizontally)
make FBW mode essential to ensure optimal data collection.
Therefore, looking forward, the development of FBW modes
with more autonomy for the speed and altitude loops, or the
introduction of plume-hunting algorithms capable of processing
sensor data in real-time for complete automation will be critical
to continued advance in this field. Further, the use of quantitative
ground-based measurements of plume parameters (for example,
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plume rise speed, transport direction, and dimensions) to inform
flight planning would contribute to both risk reduction and
flight efficiency.
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The use of a robotic arm manipulator as a platform for coincident radiation mapping

and laser profiling of radioactive sources on a flat surface is investigated in this work. A

combined scanning head, integrating a micro-gamma spectrometer and Time of Flight

(ToF) sensor were moved in a raster scan pattern across the surface, autonomously

undertaken by the robot arm over a 600 × 260 mm survey area. A series of radioactive

sources of different emission intensities were scanned in different configurations to test

the accuracy and sensitivity of the system.We demonstrate that in each test configuration

the system was able to generate a centimeter accurate 3D model complete with an

overlaid radiation map detailing the emitted radiation intensity and the corrected surface

dose rate.

Keywords: radiation mapping, 3D modeling, spectrometry, gamma scanning, nuclear waste, robotic manipulator

1. INTRODUCTION

The global nuclear industry is facing significant challenges in decommissioning and nuclear waste
management owing to an ever-increasing amount of nuclear waste awaiting to be processed and
prepared for long-term storage. In 2018, Status and Trends in Spent Fuel and Radioactive Waste
Management from the IAEA Nuclear Energy Series, reported that globally there is some 6,317,000
m3 of nuclear waste in storage awaiting a long term disposal solution (IAEA, 2018). Each waste
category has a different associated disposal cost, for example Low Level Waste (LLW) in the UK
has an attributable cost of £2.9k per m3, whilst Intermediate Level Waste (ILW) has a cost of £46k
per m3 based on 2008 data (UK Government Department of Energy & Climate Change, 2011).
It may be considered logical that higher activity wastes should cost more to manage because they
represent a higher hazard to humans. ILW and HLW have activities which are sufficiently extreme
that humans cannot come into close contact with them, mandating their remote handling and
inspection. Accordingly, on a fiscal and safety basis it is important that waste materials are not
inadvertently processed into the wrong waste category. Thresholds between these waste types are
clearly defined (in terms of activity per unit mass) and there is a significant cost difference in
managing each waste type. Nuclear decommissioning and waste management is therefore in urgent
need for technologies that deliver high accuracy and automated radiation and 3D surveying to
help waste sorting. There are numerous “sort and segregation” activities which seek to characterize
mixed nuclear wastes into their correct streams, both repeatedly and with a high throughput; whilst
avoiding the need for cost increases through excessive conservatism (Horizon2020, 2018). There is
a current funding competition call from Sellafield to address the problem of sort and segregation
tables, in which technology can identify radioisotopes and objects on tables is desired to solve this
problem (Gov, 2020). In addition, there is a concurrent critical need to develop and implement
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technologies with the ability to scan packaged wastes held in
storage, to check for external radiation hot spots and/or signs
of surface deformation or corrosion. In the UK, Sellafield Ltd
accommodates one of the largest inventories of ILW. This must
be routinely checked until such time as a Geological Disposal
Facility (GDF) becomes available. An inability to routinely check
waste in storage could present a multitude of issues.

An alternative approach, which is only now becoming
possible, is in the use of robotic manipulators equipped
with micro gamma-spectrometers to scan waste packages in
a more dynamic way. Such solid-state detection units are
usually very compact with detector crystals of 1–30 cm3

and fast counting rates (typically 20,000 cps) able to discern
different gamma-emitting radioisotopes based on their differing
decay energies. Conceptually, they enable radiation scans to
be performed robotically at much smaller stand-off distances
(<10 cm) than segmented gamma scanning, yielding a much
higher spatial resolution and sensitivity. However, in order to
conduct such close-proximity scanning, a method of determining
the sensor stand-off distance must also be integrated. To
touch the waste material could potentially contaminate or
damage the detector and hence this needs to be prevented at
all costs.

There are therefore numerous robotic technologies and
sensors which are capable of being combined to achieve this
target of combined gamma scanning and 3D profiling of nuclear
waste objects—yet to our knowledge this has not previously
been reported. The use of robotics for gamma inspection in the
nuclear industry is not new, but has typically been employed
for plant inspection and not waste assay. Tsitsimpelis et al.
(2019) discuss further developments in a recent review paper
on ground-based robotic systems for the characterization of
nuclear environments, highlighting numerous robotic systems
which have been deployed for radiation monitoring within
the last 50 years. In 1994, Redus et al. (1994) published a
paper on the use of video and gamma ray imaging systems
for inspection robots in nuclear environments. The group used
a robot with a mounted gamma spectrometer and camera to
record video footage with super-imposed gamma ray imaging
enabling the identification of radioactive sources in a room.
This is the first example of a robotic radiation mapping
procedure. Since then Bird et al. (2019) have developed this
concept by researching the use of mobile robotic platforms
for the routine inspection of nuclear facilities. The Continuous
Autonomous Radiation Monitoring Assistance (CARMA) robot
uses LiDAR sensors for Simultaneous Localisation and Mapping
(SLAM), generating a 2D plan map of the room. In addition
to this, they obtain gamma radiation intensity mapping data
from a Thermo Fisher Scientific RadEye. In a similar way,
a considerable amount of radiation mapping research has
been conducted with the use of Unmaned Aerial Vehicles
(UAVs) to map radiation at nuclear sites including the
Chernobyl and Fukushima fallout zones. Martin et al. (2017)
presented “High-Resolution Aerial Radiation Mapping for
Nuclear Decontamination and Decommissioning”. The UAV
flew autonomously along GPS defined flight paths above the
Sellafield nuclear decommissioning facility, using a sensor

package which simultaneously recorded GPS position, above
ground height using a ranging LiDAR and gamma spectrometry
data. This data was used to produce an accurate radiation
map of each survey area studied, as well as using the spectral
information from gamma measurements data to identify various
radioactive isotopes in different facilities (Martin et al., 2016b).
All of these techniques connect radiometric data to positional
data to generate a radiation map.

The use of point cloud data in the formation of 3D models
is another recent innovation that the field of robotics has been
quick to adopt. Various techniques are routinely being applied to
generate point cloud data, which in turn can be transformed into
a 3D model. Within nuclear robotics, LiDAR scanning is already
an established technique used in 3D environment reconstruction.
Aerial radiation mapping routinely relates recorded radiometric
data to a 3Dmodel collected by either LiDAR or photogrammetry
to produce a combined 3D representation (Connor et al.,
2016; Martin et al., 2016a). There are numerous examples of
high quality 3D models being generated for robotic systems
(Marturi et al., 2018; Sarker et al., 2019; Barone et al., 2020).
However they are all reliant on Charged Coupled Device (CCD)
cameras. The main issue here is that within a highly radioactive
environment CCD based devices fail, as the gamma radiation
causes damage to their internal Metal Oxide Semi-conductor
(MOS) capacitors. More novel are Time of Flight (ToF) scanners
and cameras that are often able to generate data from complex
objects for 3D reconstruction. The advantage here is ToF sensors
often have small size and therefore small gamma interaction
cross sections, making them more radiation hard. Hoegg et al.
(2013) managed to reconstruct 3D models of a selection of cars
using a ToF camera, whilst Gutierrez-Villalobos et al. (2017)
created an accurate 3D model of a plastic cup using a cheap
off the shelf VL53L0X ToF scanner. In this latter work, a
VL53L0X was located in a fixed position and a plastic cup
rotated and moved vertically in front of it. By recording the
position of the cup relative to the detector and building cloud
point data, the team successfully generated a 3D model of
the cup.

The research in the current manuscript adopts a similar
process to Martin et al. (2017) to perform close scanning of
simulated nuclear waste but using a robot arm as the mobile
platform. We use the co-ordinates generated by a robotic arm,
combined with ToF ranging at the front of the sensor to
determine its position relative to the target objects. The ToF
sensor is for exact stand-off distance measurement to permit
accurate radiation dose conversions. Other standard techniques
could be used to make a higher resolution 3Dmodel, for example
photogrammetry or 3D lidar, from a greater distance where
dose is lower. This novel scanning work builds toward the end
goal of more accurately scanning mixed wastes produced during
decommissioning as well as existing packages for routine assay.
The use of industrial robots, such as those made by KUKA, is
well-understood and many are already in use on nuclear sites
around the world. The high spatial precision and repeatability
of KUKA manipulators means that they can be accurate at the
sub-millimeter scale, making them an ideal candidate platform
for high precision detector research.
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2. EXPERIMENTAL SETUP

Robotic manipulation and instrument scanning must be well-
synchronized to provide effective integrated measurements.
For radiation scanning a KromekTM Sigma was utilized. The
Sigma incorporates a Thallium doped Caesium Iodide (CsI(TI))
scintillator crystal, 25× 25× 50 mm (Kromek, 2019), contained
inside a 1 mm thick aluminum casing. The maximum count rate
of the Sigma is 5,000 counts per second (CPS) (Connor et al.,
2018) recording gamma photons over a 50 keV to 2 MeV energy
range (Kromek, 2019). It operates effectively at room temperature
and does not require active cooling, unlike other more classical
semiconductor detectors such as HPGe or Si (Cherry et al., 2012);
this makes it an ideal choice for this application. A lead (Pb)
collimator was designed to surround the detector, to reduce as far
as possible the higher angle extraneous gamma counts incident
on the detector. A square opening on the front face of the
collimator enabled the counts to be received from a limited solid
angle, perpendicular to the scan surface. The radiation detection
software was programmed on a Raspberry Pi by ImiTec Ltd
as part of their Remote Isotopic Analysis System (RIAS) and
recorded the total number of counts received within a given
exposure time. This was sent via a server communication to
LabVIEW across 4096 energy bins which could request detector
data at various time intervals (typically 1 or 10 Hz). The system
was programmed to receive total counts and spectral data every
100ms. Using the Robot Sensor Interface (RSI) software provided
by KUKA robotics, a 6 figure co-ordinate detailing the position
of the robot flange (end piece of the robot) was attained with
a time stamp. The orientation of the end-flange was fixed,
such that it was constantly parallel with the work surface. The
two readings were time stamped and synchronized within the
LabVIEW software. The LabVIEW code generated a CSV file
which included the x-y position of each measurement location

on the table, the distance to the point from the robot arm (from
the ToF sensor) and the number of gamma counts collected. This
CSV file was then processed by a python script to interpolate
the data into a 3D radiation map. The data was approximated
to a series of points, with 2 mm lateral spacings using a linear
interpolation. These 2D points were given a third dimension
by using the ToF readings. The ToF points were similarly
interpolated and the resulting data is displayed in Figures 1–
4, 5–7. The data collection process is shown in a flowchart in
Figure 8. A VL53L0X time of flight (ToF) sensor was used to
collect point cloud data to visualize the data in 3D. The ToF
sensor transmits infrared light to measure distance. The solid
angle produced by the stock ToF sensor is around 45 degrees,
consequently it was found to regularly return anomalous data
in testing, in particular where surface topography changes were
more drastic. Hence a 3 mm collimating ball lens was fitted to
the VL53L0X for this project, to collimate the beam and increase
the spatial resolution of the scan. The radiation response of the
detector was predicted to be good, as it has a small interaction
cross section of around 0.25 cm2. The time of flight scanner takes
numerous measurements of the scene whilst moving on the arm.
It was mounted on the scanning head, remaining perpendicular
to the table at all times. The detector was longer in one axis, giving
it greater sensitivity in one dimension. This dimension was kept
perpendicular to the scan table at all times to ensure a consistent
radiation map was generated at the highest resolution possible.
For each 100 ms exposure time, the average reading collected
from the sensor was returned via the LabVIEW code.

The data collected by the arm contained a full spectrum of
4096 energy bins ranging from 50 keV to 2 MeV. This allows for
the distinct Cs-137 peak at 662 keV to be identified. A python
script was written to calculate the counts identified within the
peak range and subtract from that the baseline reading to correct
for background. A multiplication factor was applied to convert

FIGURE 1 | A figure showing the 3D model and overlaid radiation map generated when the robot scan was completed at a 1 cm standoff above 2 Cs-137 sources 30

cm apart. Left to right the source activity is 7.5 and 10 µSvh−1, respectively. The color represents the gamma radiation counts in counts per second for a given 2 × 2

mm pixel.
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FIGURE 2 | A figure showing the 3D model and overlaid radiation map generated when the robot scan was completed at a 1 cm standoff above 2 Cs-137 sources

directly adjacent. Left to right the source activity is 7.5 and 10 µSvh−1, respectively. The color represents the gamma radiation counts in counts per second for a given

2 × 2 mm pixel.

FIGURE 3 | A figure showing the 3D model and overlaid radiation map generated when the robot scan was completed at a 1 cm standoff above 2 Cs-137 sources

directly adjacent, from a second angle to aid visual clarity of the distinguished pucks. Left to right the source activity is 7.5 and 10 µSvh−1 respectively. The color

represents the gamma radiation counts in counts per second for a given 2 × 2 mm pixel.

the raw count value within the energy range to a dose rate in
µSvh−1, using the method described in Connor et al. (2020).

For scanning tests the robot was programmed to perform a
basic raster pattern scan of the “scan surface”, which was a 0.6 ×
0.26 m area. The raster scan had a step length of 1 cm and the
speed of the scan could be varied, depending on the activity of
the test sources, less active sources require longer counting times
(slower scans) to achieve adequate detection. Sealed radioactive
sources containing caesium-137 (Cs-137), one of 7.5 µSvh−1

contact dose and the other at 10 µSvh−1 contact dose were
used, alongside naturally occurring uranium (pitchblende) sealed
sources of 4.3 and 4.5 µSvh−1 contact dose rate to test the
radiation response of the system. The robot arm was set up to

move at a consistent speed in a continuous linear motion of 10
mm per second, with a single scan taking approximately 30 min.
Scan time could be reduced if higher activity sources were used,
but as a proof of concept where timing is not restricted, greater
scan time is able to yield a higher resolution radiation map, with
a longer exposure for each collection interval. A photograph of
the scanning system is shown in Figure 9.

3. RESULTS

To test the system, several different scanning scenarios were set
up using the Cs-137 and Pitchblende sources available. The first
used 2 Cs-137 sources separated apart by a distance of 30 cm,
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FIGURE 4 | A figure showing the 3D model and overlaid radiation map generated when the robot scan was completed at a 1 cm standoff above 2 Cs-137 sources 1

cm apart. Left to right the source activity is 7.5 and 10 µSvh−1, respectively. The color represents the gamma radiation counts in counts per second for a given 2 × 2

mm pixel.

FIGURE 5 | A figure showing the 3D model and overlaid radiation map generated when the robot scan was completed at a 1 cm standoff above 2 Cs-137 sources 30

cm apart. Left to right the source activity is 7.5 and 10 µSvh−1, respectively. The color represents the radiation dose rate in µSvh−1 for a given 2 × 2 mm pixel.

center to center. The scanning head was programmed to trace
the raster scan path designed at a rate 10 mm per second. The
resulting data can be seen in Figure 1.

This result demonstrates the capability of the 3D model
generation using the ToF sensor, as it generates an identifiable
geometric representation of the source pucks. The data is
displayed with the counts recorded by the detector for a given
100 ms exposure. Following this experiment, the two sources
were placed directly next to each other. This served as a test
of the ToF mapping procedure. The resulting figure is shown
in Figure 2.

From this we can clearly identify the radioactive hot spot.
In addition the physical 3D separation of the sources can be
comprehended. It is easier to distinguish on software which
enables the rotation of the generated model. In order to aid the
visual clarity in distinguishing the pucks, Figure 3 presents the
same data in Figure 2, but from a new observation angle.

To furthermonitor this 3Dmodeling routine, the sources were
next placed 1 cm apart from each other. The result of this test is
shown in Figure 4.

Here the centimeter gap is visible and both sources may be
physically distinguished. This concept works and is sufficient
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FIGURE 6 | A figure showing the 3D model and overlaid radiation map generated when the robot scan was completed at a 1 cm standoff above 2 Cs-137 sources 1

cm apart and 2 Pitchblende sources 30 cm apart. Left to right the source activity is 4.5 µSvh−1 Pitchblende, 7.5 µSvh−1 Cs-137, 10 µSvh−1 Cs-137 and 4.3

µSvh−1, respectively. The color represents the gamma radiation counts in counts per second for a given 2 × 2 mm pixel.

FIGURE 7 | A figure showing the 3D model and overlaid radiation map generated when the robot scan was completed at a 1 cm standoff above 2 Cs-137 sources 1

cm apart and 2 Pitchblende sources 30 cm apart. Left to right the source activity is 4.5 µSvh−1 Pitchblende, 7.5 µSvh−1 Cs-137, 10 µSvh−1 Cs-137, and 4.3

µSvh−1, respectively. The color represents the radiation dose rate in µSvh−1 for a given 2 × 2 mm pixel.

for identifying radiation hotspots present in given scan and
sort scenarios. However it does not provide any dose rate
information. The data was subsequently processed to give an
estimate of the dose rate of the given sources. The sources
comprised of Cs-137 containing moss samples collected from
Fukushima and were hence not perfect point-source emitters.
Instead we approximated each source as a point emitter where
the origin of the point was 3 cm beneath the puck surface, which
corresponds to the thickness of the perspex and a small air gap,
as shown in Figure 10.

For our calculations we assume that the perspex is gamma
transparent due to its low density and Z number. Hence we may
apply a correction factor to the dose rate method described in the

above section, to display the data in surface dose rate format. The
two Cs-137 sources positioned at 30 cm apart may be seen on a
dose rate map in Figure 5.

The dose rates recorded at the 1 cm standoff are in good
agreement with the actual recorded contact dose rates measured
for each source: 7.5 and 10 µSvh−1. This is very promising
in demonstrating that the system sensitivity is sufficient to
discriminate radioactive objects that classify at the Very Low
Level Waste (VLLW) to Low Level Waste (LLW) threshold. In
the UK VLLW is normally regarded as material with a specific
activity up to 100 Bqg−1 (RWM, 2010).

An ability to measure the full gamma radiation spectrum
enables different radioisotopes to be identified. Figure 6 shows
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FIGURE 8 | A flowchart showing how the system was integrated.

the radiation intensity map of 2 NORM pitchblende sources and
two Cs-137 sources.

One can determine they are all radioactive, with different
intensities, but not tell which source is which. By restricting
the spectral window to only the 662 keV gamma photons, one
generates, as a Cs-137 specific plot, as in Figure 7.

Using spectral gating like this the Pitchblende sources become
invisible to the radiation scanning system. This is key for the
nuclear industry, as it would enable radionuclide characterization
and separation to be carried out autonomously.

4. DISCUSSION

This paper introduces a novel integration of technologies that
facilitates the scanning of radioactive materials and waste-
forms, creating a 3D model of the object or environment and
adding an overlaid radiation map. The setup is comprised of
certified commercial off-the-shelf (COTS) components that in
consequence require little control performance verification. Each
component is integrated in a modular manner system, allowing
for a highly flexible system design. The nature of the integrated
system means that a multitude of sensor packages and grippers
could be added alongside or in place of the combined detector
unit used in this paper. Even the robotic arm used for this project
could be replaced with an alternate choice as there are numerous
different robotic arm systems commercially available of different
sizes, lift capabilities, reaches and radiation tolerances that could
enable a range of different scale applications, from sorting bulk
rubble or pipework to sifting sediments for hot micro-particles.

Our experiments demonstrate that it is possible for such a
scanning system to make very accurate, high sensitivity, high
spatial resolution radiation maps for resolving nuclear waste
materials from each other on the basis of emitted gamma
intensity. The result was also successful from a 3D modeling
perspective, as it clearly identifies the sources as separate objects
despite their close proximity. The spherically symmetric radiative
flux which is emitted from the radioactive sources means
that there are limitations on identifying which physical shape
corresponds to which emission on the radiation map. This is
something that could be improved by an algebraic reconstruction
technique and a comprehensive understanding of the detectors
response. This forms an important part of the future work this
project will require. The radiation sources used in this work
were relatively weak compared to real ILW and LLW. For real
waste scenarios it would be expected that a smaller micro gamma
spectrometer with greater peak dose measurement capability
e.g., CZT or GaAs, could be utilized. Scan times would also be
dramatically reduced with increasing radioactivity levels.

The next proposed step in development is to use the laser
profiling to generate a volume for the object and then based
on an assumed density, e.g., for concrete, the system could be
developed to automatically threshold objects and assign them
as either VLLW, LLW, or ILW based on their radioactivity
and calculated mass. This thresholding programme would need
to utilize an algorithm based on the inverse square law to
calculate the intensity of the emitted radiation at the surface
of the objects being scanned, accounting for the efficiency and
solid angle of the radiation detector being used. It is crucial to
get an accurate distance from the detector to the target object
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FIGURE 9 | A photograph of the scanning system in action.

FIGURE 10 | A diagram explaining the point source modeling used to invoke the inverse square law.
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because contact dose calculations are based on the inverse square
law. This means any discrepancy in reading will significantly
affect the corrected dose calculation. Ultimately, the full gamma
spectrometry capability of the system could be used to distinguish
different gamma emitters too. This would add a further level
of finesse for separating mixed nuclear wastes that might be
expected to arise during nuclear decommissioning activities. The
accuracy of the 3D model would facilitate a robotic manipulator
for grasping in addition, fulfilling the requirements of the sort
and segregation table.

The system’s scanning methodology could also be
substantially refined vs. the current simple raster scanning
we have demonstrated. For example, an initial survey scan
could conduct rapid raster scan of a scene to determine the
degree of variability in scene topology and from that, determine
automatically a more detailed scanning path that would maintain
a safe but close scanning proximity to the waste objects. The
initial survey scan would also locate any strong radiation
emitters, which the adaptive path plan could deferentially focus
on to provide a more detailed scan of that specific area of
the scene.

5. CONCLUSION

This work demonstrates the use of a combined laser profiling
and gamma-scanning sensor unit, mounted on a robot arm,
to form an accurate 3D profile of a series of test objects on
a scanning table, with a coincident overlay of the mapped
radiation intensity. Radiation maps are successfully created
by the system, which is able to correctly identify radioactive
sources of different intensities on a flat scan surface. The
generated 3D surface model reveals an accurate visualization
of the tested scene and is accurate to within a centimeter.

In addition to this an estimate of the surface dose rate
produced by the radioactive emitters is made based on the
scan data received to a good level of accuracy, correctly
identifying the dose rate of two radioactive Cs sources to
within 1 µSvh−1.
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This paper demonstrates how tactile and proximity sensing can be used to perform

automatic mechanical fractures detection (surface cracks). For this purpose, a

custom-designed integrated tactile and proximity sensor has been implemented. With

the help of fiber optics, the sensor measures the deformation of its body, when interacting

with the physical environment, and the distance to the environment’s objects. This

sensor slides across different surfaces and records data which are then analyzed to

detect and classify fractures and other mechanical features. The proposed method

implements machine learning techniques (handcrafted features, and state of the art

classification algorithms). An average crack detection accuracy of ∼94% and width

classification accuracy of ∼80% is achieved. Kruskal-Wallis results (p < 0.001) indicate

statistically significant differences among results obtained when analysing only integrated

deformation measurements, only proximity measurements and both deformation and

proximity data. A real-time classification method has been implemented for online

classification of explored surfaces. In contrast to previous techniques, which mainly

rely on visual modality, the proposed approach based on optical fibers might be more

suitable for operation in extreme environments (such as nuclear facilities) where radiation

may damage electronic components of commonly employed sensing devices, such as

standard force sensors based on strain gauges and video cameras.

Keywords: sensing, haptic exploration, crack recognition, extreme environment, optical sensing, fiber-optics

1. INTRODUCTION

An important task often performed in remote hazardous environments is the detection of
mechanical fractures on the objects, such as containers, tanks, pipes, and other technical systems
used for keeping chemical and radioactive waste. A crack may be caused by physical damage or
material degradation over time or environment changes (e.g., temperature or pressure). The effects
of non-detected fractures may lead to larger macro-scale catastrophic failures making the cracked
surface mechanically weak to perform its function.

Conventional automatic crack detectionmethods applied in industry to inspect largemechanical
structures rely on acoustic methods (Chakraborty et al., 2019), use X-ray scanning (Barhli et al.,
2017; Naragani et al., 2017), apply eddy currents techniques (Yao et al., 2014), or explore changes
in a system’s motion dynamics (Lu and Chu, 2011; Nicoletti et al., 2018). Such techniques require
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specialized and costly equipment and well-trained technical
staff making their usage in extreme environments (i.e.,
decommissioning of radioactive waste) less beneficial or
even impossible.

Rapid development of computer vision and machine learning
led to the introduction of multiple vision-based tools for
mechanical fracture detection that we briefly review below.
Chen and Jahanshahi (2017) proposes a fusion between a
convolutional neural network and a Naive Bayes to analyse video
frames for crack detection in nuclear reactors. The framework
achieves a 98.3% hit rate against 0.1 false positives per frame.
Schmugge et al. (2016) suggested a crack detection method for
nuclear power plant inspection videos by fine-tuning a deep
neural network for detecting local patches containing cracks
which are then grouped in spatial-temporal space for group-
level classification which obtains an increase of 40% in the
F1-Score with respect to the compared methods. Iliopoulos
et al. (2015) analyzed the evolution of a cracked concrete
structure obtained by applying Digital Image Correlation,
Acoustic Emission, and Ultrasonic Pulse Velocity techniques.
The results highlight the time of onset and location that the
crack started to form as well as the width and depth of
the cracks.

Vision based methods demonstrate high detection accuracy
and they are easy to implement in telerobotics applications as
cameras are essential parts of the remote inspection robots.
However, vision-based methods can fail in remote environments
with limited luminosity and video-cameras cannot operate in
presence of strong radiation. Furthermore, vision-based methods
are not capable of acquiring material properties, such as texture
and hardness.

Our work proposes to use tactile and proximity sensing
for mechanical cracks detection. In contrast to the visual
modality, tactile, and proximity sensing can provide important
information on material properties, such as shape, texture,
and hardness (Huet et al., 2017; Yuan et al., 2017; Kaboli
and Cheng, 2018). Tactile sensors were efficiently used to
characterize different materials in robotic teleoperation. Liu
et al. (2012, 2015) implemented a 6-axis force/torque finger-
shaped sensor capable of estimating the instantaneous friction
force and normal force to recognize physical properties of the
surface of unknown objects. Average classification accuracy of
88.5% is obtained when implementing a naïve Bayes classifier
on 12 different texture surfaces. Feng et al. (2018) proposed
a new method, called Active Prior Tactile Knowledge Transfer
(APTKT) to re-implement tactile knowledge of previously
explored objects which improves the discrimination accuracy
by over 20%. A multi-modal tactile sensor (BioTac, developed
by SynTouch1) was used by Wong et al. (2014) to estimate
the order of curvature and footprint dimensions explored
with various movements (distal-proximal stroke, radial-ulnar
stroke, etc.) of the robotic finger. Fishel and Loeb (2012)
proposed a Bayesian exploration which selects the optimal
movements based on previous experience to recognize 117

1https://www.syntouchinc.com/en/sensor-technology/

different textures. Kaboli et al. (2016) propose an online
tactile transfer learning method to re-use previously learned
tactile models to discriminate new textures with limited
numbers of training samples. An expanded tactile sensors
module was implemented for recognizing the alphanumeric
characters inscribed on rubber stamps in Lee et al. (2006). The
stiffness of objects was investigated by Konstantinova et al.
(2017) implementing a hybrid force and proximity finger-
shaped sensor achieving 87% classification accuracy on a set
of household objects with different stiffness values. Drimus
et al. (2014) proposed a method to classify objects into rigid
and deformable using dynamic time warping to compare the
distance between time series of signals. An optical sensor was
implemented by Huang et al. (2018) to detect target objects in
dynamic environments prior to contact allowing the teleoperator
to feel the object without an actual contact improving the
benefits of touch interaction to the operator, without negative
consequences of the robot contacting unknown geometric
structures. Tomo et al. (2017, 2018) introduced uSkin, a soft-
skin based sensor, which measures the applied force based on
changes in the magnetic field for object shape recognition. Not
many approaches use tactile sensing for crack detection and
characterization. For additional research on tactile sensing and
texture recognition, please refer to Kappassov et al. (2015) and
Luo et al. (2017).

In this work, we propose a novel tactile sensing-based
technique for mechanical fractures detection with the potential
application to nuclear-decommissioning tasks performed by
remotely operated robots. The nuclear power industry has been
among the slowest to adopt advanced technologies (Wood,
2004; Bogue, 2011). Any instrumentation to be used in the
nuclear environment must show robustness under the influence
of nuclear radiation, match safety requirements and satisfy the
highest industrial standards. The effects of radiation greatly
vary and depend on several parameters, including the type
of radiation and the total dose (Bogue, 2013). Our approach
relies on optical fibers for data transmission from the sensor’s
measurement elements to the remotely located electronic unit.
Optical fibers are among the devices that are less influenced in a
nuclear environment since gamma radiation does not interfere
with their basic sensing mechanism (Berghmans et al., 1999;
Inaudi et al., 2001; Phéron et al., 2012). Berghmans and Decreton
(1998) compared the gamma radiation response of three types of
optical fiber temperature sensors. For the three sensor types, the
transducer mechanism does not seem to be affected by gamma
radiation. Fiber optic cables are expected to see greater use in
the nuclear power industry, replacing electrical cables (Berthold,
1994; Hashemian, 2009). Several applications implementing fiber
optic cables are already been realized. Kim et al. (2017) developed
a fiber-optic based monitoring system for water temperature,
water level and radiation level of spent nuclear fuel pool (SNFP)
at a nuclear power plant. The performance test results show that
individual sensors can measure the changes in real-time. Ball
et al. (2012) described several measurement technologies with
potential application to gas reactors. Among these, an optical-
based pressure sensor based on the trajectory of the light in
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FIGURE 1 | Hybrid Fiber Optical Force/Proximity fingertip sensor: (A) Visualization of the three different components of the sensor; (B) Close up visualization of the

fiber optics operating principles. D1, D2, D3 indicates the three deformation optical fibers. P the proximity optical fiber. (C) The complete setup for the data

acquisition. From left to right: Laptop, Keyence sensors, Touch Haptic device with 3d printed end effector, and Hybrid Fiber Optical Force/Proximity Sensor, Arduino

board, and Power Supply.

FIGURE 2 | Visualization of the set of objects explored during the experiments. The set for the Crack Recognition Analysis is formed by no crack, crack, bump, and

wavy pattern surfaces. The series for the Crack Width classification experiment is made up of the same fractured surface with distinct widths of 0, 1, 2, 5, 8,

and 10 mm.

glass is analyzed. The polarization of light crossing the glass is
created through stress-induced in the glass as a result of pressure.
Through the fiber optic sensor, the pressure measurement can be
found through the polarized light intensity.

Present work demonstrates how tactile and proximity
sensing can be efficiently used to perform automatic crack
detection. The proposed method uses machine learning
techniques to detect cracks and bumps based on the deformation
and proximity signals which are recorded during physical
interaction between a custom-designed robotic finger and
the remote environment, Konstantinova et al. (2017). In
case a crack is detected, the proposed automated technique

classifies its width. Both offline and online classifications are
performed. A fiber optic sensor has been implemented for
data acquisition because of the reduced dimensions (∼55
mm), weight (∼200 g), low cost, the strong immunity to
electromagnetic interference and the improved environmental
resistance. This approach may be implemented also in extreme
environments (e.g., in nuclear plants), since gamma radiation
does not interfere with the basic sensing mechanism of fiber
optic-based sensors (Berghmans et al., 1999). In addition,
the nylon component of the implemented sensor can be
used in irradiation conditions with limitations as Morita
and Seguchi (1983) presented. To the best of the authors’
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FIGURE 3 | (Top) Raw measurements from the four sensing elements of the sensor (deformations D1, D2, D3, and proximity P) for the set of surface patterns: “no

crack,” “crack,” “bump,” and “wavy pattern.” Each column shows a different optical fiber signal. In red, the results of the left deformation (D1). In green, the data of the

right deformation (D2). In blue, the normal deformation (D3). In yellow, the proximity data (P). (Bottom) The movement of the sensor is shown together with the

corresponding proximity data.

knowledge, this is one of the first works on fracture recognition
based on hybrid fiber optical force/proximity sensors. The
Present work is based on our previous results (Palermo
et al., 2020) demonstrating the feasibility of a tactile
sensor for cracks detection. The novelty of this work is

the implementation of more accurate mechanical fracture
detection and classification methods, and a corresponding
comparative study. Additionally, this paper provides a detailed
description of the tactile data collection, processing and real-time
classification implementation.
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FIGURE 4 | Example of correct segment extraction. The complete

measurement trial is displayed in blue. In green, the data points corresponding

to the changes in the sensor-sample interaction mechanics. In red

discrete-time derivative for proximity measurement.

2. EXPERIMENTAL METHODOLOGY

2.1. Tactile and Proximity Sensor
In this work, the integrated force and proximity finger-
shaped sensor described by Konstantinova et al. (2017) is
used. The sensor is made of 3D printed rigid (VeroClear
Glossy) and soft (Nylon—PA2200) components allowing it to
bend during interaction with the environment, as shown in
Figures 1A,B. All the components are printed with an SLS
printer EOS P100. The sensor employs three pairs of optical
fiber cables (D1, D2, D3) to measure the deformation of the
flexible middle part based on the changes of the reflected
light intensity. The fourth pair of optical fiber cables (P) is
used to measure proximity, i.e., the distance between the tip
of the finger sensor and nearby objects. The implemented
proximity permits the shape recreation in 2D of the explored
surface. The sensor is capable of measuring bending torque
and normal contact force during physical interaction with the
environment. As described in Konstantinova et al. (2017), the
implemented sensor is able to detect three-axis force/torque
signals and measure the distance to the explored object.
The sensor measures normal force up to 4.5 N. The lateral
torque values (around the x- and y-axes) reach a maximum
of ±18 N/mm. The usage of nylon to print the flexible
structure led to low hysteresis and high robustness. The
proximity sensor (P) can measure distances up to 30 mm.
The calibration method has been described in Konstantinova
et al. (2016). Each pair of the sensor’s fiber optic cables is
attached to a Keyence FS-N11MN light-to-voltage transducer.
Thus, the change of light intensity modulation is measured
and, using a calibration matrix, converted to force, torque, and
distance measurements.

2.2. Experimental Setup
To collect data and test the proposed crack detection algorithm,
the tactile and proximity sensor, described in section 2.1, has
been attached to the end-effector of a Touch desktop haptic
interface (formerly known as Phantom Omni Geomagic) as
shown in Figure 1C. The Phantom Omni was programmed to
slide the tactile sensor along a static sample surface following
a programmed periodic movement. Data from tactile and
proximity sensors were recorded through an ArduinoMega ADK
micro-controller, connected via a USB port, at 400Hz. These data
were later synchronized with the absolute position of the tip of
the tactile sensor calculated through the encoder readings of the
Phantom Omni. Data acquisition and control were implemented
through dedicated software libraries (OpenHaptics and Robotic
Operating System) running on an Ubuntu desktop computer.
The material samples, as well as the Phantom Omni interface,
were fixed to a laboratory desk to minimize any vibration and
unwanted displacements.

2.3. Data Acquisition Protocol
In this work, machine learning techniques are employed for crack
detection and crack width classification. A set of 10 objects with
different surfaces (no crack, cracks of different widths, a bump
and a wavy pattern) were manufactured with PLA plastic using
3D printing technology (Ultimaker III, 0.2 mm layer height,
0.4 mm nozzle diameter). The wavy pattern consists of a repeated
pattern of sine waves of 1mm amplitude and 5mm magnitude.
The samples are shown in Figure 2. The types of these sample
objects correspond to the classes implemented for training and
testing the classifier. The PhantomOmnimoved the tactile sensor
across the sample objects: the periodic sliding has a magnitude of
1.6 cm and a frequency of 1,000 Hz. The average sliding velocity
was 3.89 mm/s. The initial position of the tactile sensors was not
controlled and varied from trial to trial and was set at∼5–10 mm
from the crack edge. No normal force was applied by the sensor
to the sampled surfaces except the force caused by the sensor
weight (∼200 g). Tactile and proximity signals were recorded
for 12 repeated continuous sliding movements. This continuous
recording was repeated five times. Figure 3 shows an example
of raw data acquired on “no crack,” “crack,” “bump,” and “wavy
pattern” for a continuous recording. For brevity, only the data
acquired during sliding on different surfaces are shown.

2.4. Experimental Dataset
The data-set generated and used in this study is publicly available
on the figshare repository “Automatic Fracture Database”2. The
data is organized in a nine column format, corresponding to
the following chronological measurements: sensor displacement,
sensing elements signals (D1, D2, D3, P), the identification
number of the current experiment, the number of the
measurement trials (single sensors movement), the type of the
surface explored (0 = no crack, 1 = crack, 2 = bump, and 3
= wavy pattern), and the direction of movement (0 = right,
1= left).

2https://figshare.com/s/14deb00d874400e34d67
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FIGURE 5 | Comparison of classification accuracy of different moving window size to compute the derivatives for the automatic preprocessing step. Time window of

n = 10 data samples achieves better classification accuracy.

3. DATA ANALYSIS FOR CRACK
DETECTION

The goal of the proposed algorithm is to detect and characterize
mechanical fractures, such as cracks, based on the deformation
and proximity data recorded from the sensors. The time history
of the deformation and proximity data is recorded. Preprocessing
step and features extraction are performed. The resultant output
is used as an input for the classification algorithm.

3.1. Pre-processing
The goal of preprocessing was to prepare datasets containing
information for the mechanical features, such as crack, bump,
and wavy pattern and exclude not relevant datapoints (i.e.,
recording of the sensors sliding on a flat surface before and after
interacting with the bump or crack). The preprocessed labelled
datasets were then used for training process and cross-validation
test. The preprocessing was fully automatic and was performed
on the data collected from the haptic manipulator (sensor
displacement) and optical sensing elements integrated in the
sensor (deformations D1, D2, D3 and proximity P). The sensor’s
position data (obtained from the Geomagic haptic device)
and the sensing elements data (D1–D3, P) were synchronized

and sampled at 400 Hz. Prior the prepossessing stage the
measurements of each trial (single sensor movement along the
explored surface) were arranged in the following matrix:

M
m×5

= [x⊤ d⊤1 d⊤2 d⊤3 p⊤], (1)

with x, d1, d2, d3, and p vectors of sizem× 1 representing single
trial recordings (time history) of the sensor’s displacement, three
deformation signals and proximity signal, correspondingly, and
m the number of data points in a specific trial. The proximity
data (p) of each measurement trial was used to extract the data
points corresponding directly to a specific mechanical feature
(crack, bump, wavy pattern). This allowed to create a subset of
data containing only the information specific to the mechanical
feature, and to exclude the data points at the start and the
end of the recording. This process was performed automatically,
based on the analysis of the discrete-time derivative of proximity
sensing for a given time window, and extracting the data for
which the derivative exceeded a pre-defined threshold. The
average discrete-time derivative for proximity measurement was
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FIGURE 6 | Decision surface of random forest classifier with four classes (no crack, crack, bump, and wavy pattern) for paired features: D1, D2, D3, and Proximity.
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FIGURE 7 | Feature importance analysis for the random forest classifier.

computed as

1pi =
pi+n − pi

n
,

1p =

1

m− n

m−n
∑

i=1

1pi

(2)

with 1pi a local discrete derivative of ith proximity signal at
measurement based on n data points, pi representing ith element
of proximity measurement vector, and 1p representing
the averaged discrete-time derivative of the proximity
measurements. Then, the data points of all measurement
signals for which 1pi > |1p| are extracted from each trial as
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FIGURE 8 | Measurements distribution for sensing elements D1, D2, D3, and P for “crack,” “no crack,” “bump,” and “wavy pattern” samples. Each plot shows

distribution collected from six measurement trials.

they represent the changes in the sensor-sample interaction
mechanics. Additional 10% of the original measurement data
is added before and after the extracted points to ensure that
the data is complete and represents the explored mechanical
feature well. Figure 4 shows an example of the data extraction
for one sliding movement on a crack object. The complete
measurement trial is displayed in blue. In green, the data points
corresponding to the changes in the sensor-sample interaction
mechanics. In red, these represent the discrete-time derivative
for proximity measurement. To determine the appropriate
moving window size for computing the derivatives we performed
sample classification tests with different sliding window sizes.
Figure 5 shows the results of this test which demonstrated that
a time window of 25 ms (containing n = 10 data samples), is
sufficient to achieve better good classification accuracy.

3.2. Feature Extraction
Feature extraction was performed on each successive 25 ms time
window with an increment of 5 ms. The size of the time window
was selected based on the sampling frequency. Feature extraction

is executed on windows of 10 data points with a window shift
of 2 data points. The window length was empirically chosen
through a grid search analysis. Time-domain features, including
MeanAbsolute Value (MAV) and RootMean Square (RMS), were
computed. The advantage of time-domain features is that they
are fast to calculate since they do not require any mathematical
transformation, e.g., into the frequency domain. On the other
hand, they are sensitive to noise. These feature demonstrated
high performance in previous surface Electromyography (sEMG)
works of (Hakonen et al., 2015; Palermo et al., 2017).

3.3. Classification Algorithm
A set of classifiers was employed for the classification step:
Random Forest with 100 trees, K-Nearest Neighbors (KNN) with
five neighbors, and Quadratic Discriminant Analysis (QDA).
Random Forest classifier (Breiman, 2001) can successfully handle
high data dimensionality since it is both fast and insensitive
to over-fitting. In addition, it was evaluated for remote sensing
Belgiu and Drăguţ (2016). First, Random Forest with 1,000 trees
was tested but it resulted in non-statistical relevant differences
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FIGURE 9 | (A) Comparison of the three implemented classifiers (Random Forest, QDA, and KNN) for fracture recognition classification. (B) Comparison of the three

implemented classifiers (Random Forest, QDA, KNN) for crack width classification.
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FIGURE 10 | (A) Classification accuracy results for the crack recognition. (B) Classification accuracy results for the crack width classification analysis.
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TABLE 1 | Complete classification accuracy for crack recognition experiment with Random Forest classifier.

Implemented

feature

Mean (%) Standard

deviation

Precision score (%) Recall score (%)

RAW—Proximity 81.86 3.64 82.66 81.86

MAV—Proximity 77.70 4.10 79.25 77.70

RMS—Proximity 77.17 4.48 79.07 77.18

RAW—Deformation (D1, D2, D3) 80.16 9.34 81.97 80.16

MAV—Deformation (D1, D2, D3) 88.27 10.37 90.71 88.27

RMS—Deformation (D1, D2, D3) 87.96 10.23 90.43 87.96

RAW—Deformation + Proximity 92.75 5.17 93.83 92.75

MAV—Deformation + Proximity 94.64 6.79 95.93 94.64

RMS—Deformation + Proximity 94.48 7.21 95.88 94.48

RAW—Deformation (D1, D2) +

Proximity

91.88 4.44 92.76 91.88

MAV—Deformation (D1, D2) +

Proximity

95.17 5.99 96.10 95.17

RMS—Deformation (D1, D2) +

Proximity

94.90 6.42 95.93 94.90

in respect to a Random Forest with 100 trees. It was then
decided to discard it and use the Random Forest with 100
trees to increase the speed of the classification. The classification
classes are equal to the type of surface explored (no crack,
crack, bump and wavy pattern) for the surface crack recognition
experiment and the width of the crack (0, 1, 2, 5, 8, and 10
mm) for the crack width classification. The complete data-set
was then split 70% for training test and 30% for testing. Figure 6
shows an example of the decision surface of one of a decision
tree of the Random Forest for paired features of Proximity (P)
and Deformation data (D1, D2 and D3) with MAV feature.
First, raw, MAV and RMS data were classified using only the
proximity data (P) or the deformation signals (D1, D2, D3).
During the experiments, it was found that implementing the
four dimensionality features together (P, D1, D2, D3) over-fitted
the classifier. The features importance analysis was performed
to avoid over-fitting. Figure 7 shows the calculated feature
importance. Among the four features. D3 is the least decisive one
for the random forest classifier. Thus, the random forest was later
trained and tested on proximity data (P) together with D1 andD2
deformation signals. Each observation was trained on itself and
tested against the rest of the set one at a time (e.g., observation 2
was trained on itself and tested against observations 1, 3, 4, and 5)
for intersession investigation. In total, 20 results for each analyzed
feature were obtained. Kruskal-Wallis statistical analysis, which
indicates if the data samples come from the same distribution,
was performed on the whole set of results.

4. RESULTS

Figure 8 shows the distribution of data on the different surfaces
of 6 of the 12 repetitions, for brevity. The common response
among the repetitions permits to have no dependence on the
sensor starting position and movement.

4.1. Crack Recognition
The goal of the Crack Recognition experiment is to recognize
the presence of a crack in the object. Figure 9A shows the
results of the classification with the implemented classifiers.
Random Forest achieves the best classification accuracy using
the implemented feature of MAV and RMS and considering
the left and right displacement of the sensor (D1, D2) together
with the proximity data (P). The second best classifier is KNN,
which is expected, since the various class (nocrack, crack, bump,
wavy pattern) data are distributed in close proximity to each
other, as shown in Figure 6. For brevity, only the results of
the Random Forest classifier are shown in the following tables
and figures. Figure 10A shows the complete results for the
classification analysis. Table 1 shows that the lowest classification
accuracy of 77% is obtained when classifying MAV or RMS
data only considering the proximity data. Whereas, the best
classification accuracy of 94% is achieved when implementing the
MAV or RMS feature for the left and right displacement of the
sensor and the proximity data. Using only deformation or only
proximity data may be sufficient to train the classifier. However,
better results are obtained when increasing the dimensionality
of the classifier and considering proximity (P) together with
the left and right displacement of the sensor (D1, D2). Thus,
Implementing the whole deformation signals together with
the proximity data brings little or nothing improvement to
the classification accuracy in respect to using a feature with
one less dimensionality. Figure 11A shows the results for the
crack recognition. The most difficult surface to classify for the
algorithm is the bump surface since it is comparable to the
wavy pattern one. The Kruskal-Wallis test was performed on
the results of the classification analysis of the different features
and the value obtained (p < 0.001) indicates that the null
hypothesis of having all data samples from the same distribution
is rejected. Thus, there are significant differences between the
implemented features.
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FIGURE 11 | (A) Confusion matrix result for crack recognition with Random Forest classification with MAV feature and left and right displacements combined with

proximity data. (B) Confusion matrix result for crack width classification with Random Forest classification with MAV feature and left and right displacements combined

with proximity data.

FIGURE 12 | Real-time classification comparison for Random Forest, QDA, and KNN for the complete set of implemented features.
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TABLE 2 | Complete classification accuracy for crack width classification experiment with Random Forest classifier.

Implemented

feature

Mean (%) Standard

deviation

Precision score (%) Recall score (%)

RAW—Proximity 63.09 4.20 61.89 63.09

MAV—Proximity 61.54 3.02 62.00 61.54

RMS–Proximity 60.11 3.82 61.35 60.11

RAW—Deformation (D1, D2, D3) 48.33 5.05 45.63 48.33

MAV—Deformation (D1, D2, D3) 58.02 5.67 56.68 58.02

RMS—Deformation (D1, D2, D3) 58.13 6.05 56.71 58.14

RAW—Deformation + Proximity 73.97 3.55 74.47 73.97

MAV–Deformation + Proximity 79.81 4.46 81.27 79.81

RMS—Deformation + Proximity 79.55 4.39 81.02 79.55

RAW—Deformation (D1, D2) +

Proximity

72.73 2.73 72.87 72.73

MAV—Deformation (D1, D2) +

Proximity

80.29 3.84 81.22 80.29

RMS—Deformation (D1, D2) +

Proximity

80.34 3.70 81.32 80.34

4.2. Crack Width Classification
The scope of the crack width classification experiment is to
classify the width in millimeters (mm) of the fracture of the
explored object. Figure 9B shows the comparison of accuracy,
recall score, and precision score of the implemented classifier.
Random Forest classifier achieves the best classification accuracy,
followed by KNN. As described in the previous section, class data
are close in proximity to each other, which is why KNN obtains
good results for this experiment. Figure 10B and Table 2 shows
the complete results for the classification analysis. The lowest
classification accuracy of 48.19% is obtained when classifying
raw data with only deformation signals. Whereas, the best
classification accuracy of ∼80% is achieved when implementing
MAV or RMS features with left and right deformation (D1 and
D2) together with the proximity data. In this case, using only
deformation or only proximity data is not sufficient to train the
classifier. Figure 11B shows that the most difficult label to classify
is the fracture of 1 mm width which can get mislabeled as a
flat surface. This may be due to the fact that the fracture is so
small that the left and right displacement are not big enough
to trigger the recognition of the crack. Kruskal-Wallis results
(p < 0.001) indicate statistically significant differences among
results obtained when analyzing only deformation signals, only
proximity data and both deformation and proximity data. In
this case, instead of using a classifier, a regressor may be more
appropriate to use since having a discrete class may not be the
best solution when predicting the width of a fracture.

4.3. Real-Time Implementation
To further test the result of the classifier an online application
was developed for the crack recognition analysis. During this
experiment, it was found that the fiber optic cables position
and their twisting influence the sensor data. Thus, an additional
acquisition was necessary to obtain a model to use for the real-
time classification. Offline models of Random Forest Classifier,
KNN, and QDA were generated implementing the newly

acquired data. The models were later used to predict the class
of the data acquired in real-time while sliding the sensor over
different surfaces. The software marks the start position of the
detected crack and end position in relation to the Geomagic
position. The same analysis, as the previously described offline
classifier, was applied. Three continuous sliding movements were
performed on each of the crack type surfaces as shown on
the first row of Figure 2. Each movement was performed in a
different section of the surface (top, center, bottom). The possible
proximity data (only proximity, only deformation, deformation +
proximity, and P +D1 +D2) and features (RawData,MAV, RMS)
combination were investigated for each classifier, for a total of 432
classifiedmovements. Figure 12 shows the results of the real time
classification accuracy. In this case, the KNN classifier achieves
better results than the Random Forest. Increasing the number
of classified sliding movements may reduce this difference.
Having 3D printing and of regular shape objects may limit the
training and testing but this will be addressed and improved in
future analysis.

5. CONCLUSION AND FUTURE WORK

This work demonstrates how tactile and proximity sensing can
be efficiently used to perform automatic crack detection. The
proposed method uses machine learning techniques to detect
the surface fractures and bumps of explored objects based on
fiber optical proximity signals which are recorded during physical
interaction between a custom-designed robotic finger and the
remote environment. Experimental validation of the proposed
method has shown that it is possible to achieve around 94% for
crack detection and 80% for crack width classification accuracy.
To achieve better results for the crack width classification, an
alternative regressor may be more appropriate to use with respect
to the implemented classifier. Real-time classification results, on
three sliding movements, shows that it is possible to correctly
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characterize the surface of the investigated object. During this
experiment, it was found that the fiber optic cables position and
their twisting influences the sensor data. Thus, additional analysis
will be required to compensate for the change of flow of the
data. In contrast to previous techniques, which rely on visual
modality, the proposed approach, based on optical fibers, which
may be more suitable for operation in extreme environments
(such as nuclear facilities) where radiation damages electronic
components of video cameras.

Future research will focus on integrating a multi-modal
approach with visual patches and implementation of the
proposed system on a teleoperated mobile manipulation system.
We plan to demonstrate how automatic fracture characterization
will be efficiently integrated with the mobile manipulator
controller (Farkhatdinov and Ryu, 2008) and how the obtained
tactile data can be visualized in a dedicated virtual reality-based
human-operator interface (Omarali et al., 2020). Further studies
will be performed on dimensionality reduction with principal
component analysis which may increase the classification
accuracy. Additional features, such as local min-max values,
which may give a better comprehension of the data, will be
analyzed. The implementation of an alternative bio-inspired
ciliary force sensor will be investigated for small crack detection
(Ribeiro et al., 2017).
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A Holistic Approach to
Human-Supervised Humanoid Robot
Operations in Extreme Environments
Murphy Wonsick1, Philip Long2, Aykut Özgün Önol1, Maozhen Wang1 and Taşkın Padır 1*

1Institute for Experiential Robotics, Northeastern University, Boston, MA, United States, 2Irish Manufacturing Research, National
Science Park, Mullingar, Ireland

Nuclear energy will play a critical role in meeting clean energy targets worldwide. However,
nuclear environments are dangerous for humans to operate in due to the presence of
highly radioactive materials. Robots can help address this issue by allowing remote access
to nuclear and other highly hazardous facilities under human supervision to perform
inspection and maintenance tasks during normal operations, help with clean-up missions,
and aid in decommissioning. This paper presents our research to help realize humanoid
robots in supervisory roles in nuclear environments. Our research focuses on National
Aeronautics and Space Administration (NASA’s) humanoid robot, Valkyrie, in the areas of
constrained manipulation and motion planning, increasing stability using support contact,
dynamic non-prehensile manipulation, locomotion on deformable terrains, and human-in-
the-loop control interfaces.

Keywords: humanoid robots, motion planning, supervised autonomy, nuclear, glovebox

1 INTRODUCTION

As the worldwide energy demand is expected to increase by 50% within the next 3 decades, nuclear
energy will play a critical role in meeting clean energy targets worldwide. At the same time, many of
the world’s nuclear reactors are aging; from Japan to the United Kingdom to the United States,
scientists, engineers and regulators are counting on new innovative technologies that will make
decommissioning and clean-up missions safe for humans, environmentally-friendly and cost-
effective. Furthermore, industrializing countries are investing in building new nuclear power
plants to meet their growing energy demands.

Nuclear energy operations and nuclear disasters have great international impact with no
boundaries. Ensuring safe, efficient, and productive operations of facilities and improving
response to unplanned emergencies at any location around the globe is in the best interest of
the international community. Moreover, the urgency and scale of the problems identified in high-
consequence situations, such as the Fukushima (Japan) clean up and waste tank decommissioning in
Savannah River Site (United States), require an interdisciplinary team of scientists, engineers, and
technologists to solve similar yet sufficiently distinct challenges. For example, since 1989, the
United States Department of Energy has spent over $250 billion of public funds on cleanup. The
cleanup is less than half complete and the remaining mission scope is estimated to cost at least
another $250 billion more over a 40–50- year period. Similarly, the Japanese government estimated
the total costs for the Fukushima cleanup at $188 billion for the next 40 years.

It is now clear that robotics will play a key role in accelerating these cleanup timelines and
reducing the costs, by addressing operational needs and challenges in nuclear facilities. Robotics
technologies are needed to remotely access nuclear and other highly hazardous facilities under
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human supervision to perform inspection and maintenance tasks
during normal operations. During decommissioning, robots will
become the eyes and hands of human operators in places no
human has gone for more than 50 years. However, using robots in
such environments is not without challenges, the Fukushima
disaster has shown that conventional robots must be significantly
modified, Nagatani et al. (2011b), to cope with highly radioactive
environments. This is typically achieved by equipping the system
with lead plates to protect electrical components, Nagatani et al.
(2011a), which in-turn add weight and may impair functionality.
Alternatively, the number of electronic components can be
minimized and used in conjunction with specifically hardened
parts, however high levels of radiation still can destroy such
systems in a matter of days, Funakoshi (2016), Urabe and
Stapczynski (2017), Yirmibeşoğlu et al. (2019). Nevertheless,
robots have already been deployed in less active nuclear
environments in commissioning and waste disposal task,
Bogue (2011), and on-going research is demonstrating
promising applications for human-supervised robotics in a
range of different tasks in the future, Marturi et al. (2016).
They will improve our ability to respond to and recover from
unplanned events or operational emergencies in such critical and
safety-significant applications. Nuclear environments are
dangerous for humans to operate in due to the presence of
highly radioactive materials. They are typically distant as the
facilities separate these dangerous environments from humans by
thick walls. And they present daring operational conditions by
size and configuration with tight passages, debris accumulated
over the years and cluttered internals.

Our research plan is motivated by the need for general purpose
robots in routine and emergency operations in nuclear facilities for:
1) Disaster response and environmental clean-up, such as more
than 175 waste tanks in Hanford (WA) or the F-canyon in
Savannah River (SC). These processes rely heavily on accurate
remote sampling and characterization before permanently
grouting the facilities, by collecting samples from different spots
for analyzing what and how much radioactive material remains.
The operating environment is unknown and cluttered with vertical
and horizontal piping, fallen debris and puddles and muck-like
material on the floors (in the waste tanks). 2) Operational
efficiencies—federal laws require nuclear facilities to develop
and maintain emergency preparedness plans to protect the
public. These emergencies include unusual events during
normal operations to black swan events such as Fukushima,
Chernobyl and Three Mile Island accidents. Furthermore, the
aging workforce in the energy sector requires the adoption of
technology to keep up with day-to-day operations. As a result,
human-supervised robot assets with robust manipulation
capabilities in these challenging environments and situations are
needed. 3) Worker safety—Before any work can begin, human
workers must enter a facility to characterize radioactive hazards,
such as type of radiation, dose rates, and location of sources. This
data is then used to determine the proper protective clothing and
stay time limits for personnel. Replacing personnel with robots
would be highly desirable in radioactive environments.

This paper discusses our approach to move towards utilizing
humanoid robots in nuclear energy operations and nuclear

disasters by furthering the development of human-supervised
robot control and manipulation capabilities. Section 2 presents a
method capable of handling manipulation and motion planning
in constrained environments, such as gloveboxes. Section 3
presents work in utilizing support contacts to increase stability
of a standing humanoid robot operating inside a glovebox.
Section 4 presents a method to plan dynamic non-prehensile
manipulation behaviors in a highly-constrained environment,
with focus on gloveboxes. Section 5 presents a way to estimate
in-situ deformable terrains in order to navigate in unknown
environments. Section 6 presents a human-in-the-loop user
interface for operating humanoid robots.

2 CONSTRAINED MANIPULATION AND
MOTION PLANNING

In hazardous environments it is crucial to perform manipulation
tasks effectively. Additionally, such environments often provide
constraints on the motions allowed, such as when operating
through glovebox ports. In order to accomplish effective
manipulation, different robot configurations should be
evaluated. This is particularly important for redundant systems
such as humanoid robots. A robot performance measure can be
classified as local, e.g., manipulability (Yoshikawa, 1984) or global
such as workspace analysis (Vahrenkamp and Asfour, 2015).
Local indexes are advantageous as they provide a more generic
solution and may be utilized in control frameworks without
workspace knowledge. Hence, they can be used to choose a
configuration based on a robot’s inherent capability. However,
local indexes study the system’s kinematic transformations from
configuration to task space, ignoring environmental constraints
that have significant effects on the robot’s admissible motions. In
particular, for operations in hazardous environments, the
workspace is often unstructured and uncontrolled. Moreover,
unscheduled contacts may lead to catastrophic results. For these
reasons, it is important to transmit an accurate measure of what
the robot can or cannot do in its current pose to a remote
operator/supervisor.

The following section recalls the work presented in (Long and
Padır, 2018; Long and Padir, 2019; Long et al., 2019) in which a
new measure called the constrained manipulability polytope
(CMP) that considers the system’s kinematic structure,
including closed chains, composite sub-mechanisms, joint
limits, and the presence of obstacles is developed.

2.1 Related Work
The manipulability ellipsoid first defined (Yoshikawa, 1984)
measures the capabilities of a robot manipulator based on its
kinematic structure. Extensions to include positional joint limits
are proposed in (Tsai, 1986) using penalty functions and (Abdel-
Malek et al., 2004) using augmented jacobian matrices. Robots
with heterogeneous joint velocity limits are examined in (Lee,
1997), while dynamic constraints are considered (Bowling and
Khatib, 2005; Zollo et al., 2008). For humanoid robots,
improvements on local measures can be obtained by including
the effects of contact while evaluating the dynamic manipulability
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of a humanoid’s center of mass (Gu et al., 2015; Azad et al., 2017).
Moreover in (Azad et al., 2017) either joint torque and/or
acceleration limits are accounted for by using a scaling matrix.
In (Vahrenkamp et al., 2012, 2013) the manipulability ellipsoid is
augmented to include environmental constraints. The authors
include joint position limits and the detrimental effects of nearby
obstacles using a spatial decomposition referred to as the
hyperoctants approach. Manipulability polytopes (Kokkinis
and Paden, 1989) provide a more elegant and indeed exact
method for representing velocity limits in the Cartesian space.
There are several examples where diverse constraints, defined by
a set of inequality or equality equations, have been incorporated
into polytopes. For instance, mobile robot toppling constraints
have been integrated into the available wrench set for a cable-
driven parallel robot in (Rasheed et al., 2018). Alternatively,
friction constraints can be added after linearization (Caron
et al., 2017).

2.2 Manipulability
Consider an n degree-of-freedom (DOF) manipulator in m
dimensional space. Let νn denote the twist at the end effector,
comprising three translational and three angular velocities
defined, respectively, as v and ω. νn is obtained as

νn � [ v
ω
] � Jn _q, (1)

where Jn ∈ R6×n is the Jacobian matrix and _q � [ _q1, _q2 . . . _qn]T is
the joint velocity vector. An exact measure of the manipulator’s
capabilities can be obtained by studying the manipulability
polytope in conjunction with the joint velocity limits. A
polytope, P can be represented as the convex hull of its vertex
set (V-representation), i.e.,

PV � ⎧⎨⎩x : x � ∑
i�1

n

αiyi

∣∣∣∣∣∣∣∣∣αi ≥ 0,∑
i�1

n

αi � 1
⎫⎬⎭, (2)

where yi denotes the ith element of the vertex set and x is any
point inside P. Equivalently, P can be defined as the volume
bounded by a finite number of half-spaces (H-representation)

PH � Ax ≤ b, (3)

where A contains the half-spaces’ normals and b is the shifted
distance from the origin along the normal. Converting from V
and H is possible, for example, using the double description1

method (Fukuda and Prodon, 1996). The polytope representing
joint velocities for an n-DOF robot, denoted by Q, is written in
H-representation as

QH � [ In
−In ] _q≤[ _qmax

− _qmin
], (4)

where In is the n × n identity matrix and _qmax and _qmin denote the
robot’s maximum and minimum joint velocities respectively. The
equivalent polytope defined by its vertices is written as

QV � { _qv
1, _qv

2, . . . , _q
v
2n }, (5)

where _qvi denotes the i
th vertex ofQ. The convexity of a polytope is

preserved under affine transformation, i.e., a linear transformation
applied to QV is a convex combination of the same linear
transformation applied to the vertices. Thus, a manipulability
polytope (MP), denoted as P, representing the Cartesian-space
velocities can be obtained using the linear kinematic transform
defined by one. P’s vertex set representation is given as

PV � { νv1 . . . νv2n } � { Jn _qv
1 . . . Jn _q

v
2n } (6)

and its volume, denoted aswp, can be used as an indicator of robot
performance.

2.3 Constrained Manipulability
The manipulability polytope does not give a true picture of the
robot’s capabilities as theymay be reduced due to environmental or
joint limit constraints. Thus in our previous work (Long and Padır,
2018; Long and Padir, 2019), a method of considering obstacle and
joint position limits is given. To do so the kineostatic danger field
(Ragaglia et al., 2014) as an input which limits the maximum
attainable velocity in the direction of a potential collision. The
robot’s velocity is reduced until the danger-field value is below a
predefined threshold. The kineostatic danger field divides the
robot’s links into l control points (CPs) and the workspace into
c cells. The danger field for the jth (j � 1, . . . , c) cell is calculated as

ϕj � max
i�1...l

⎛⎝ 1����ri − rj
���� +

||vi||cos(∠(ri − rj, vi))∣∣∣∣∣∣∣∣ri − rj
∣∣∣∣∣∣∣∣2 ⎞⎠, (7)

where rj and ri denote the position vector of the jth cell and the robot’s
ith CP, respectively. The translational velocity of point i is denoted by
vi. To generate a set of inequality constraints, Eq. 7 is re-defined as

∀i ∈ CP, ϕj ≤
1∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣ +

||vi||cos(∠(rij, vi))����rij����2 , (8)

where rij � ri − rj. Substituting the dot product

cos(∠(rij, vi)) � vTi rij
||vi||

∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣, (9)

(8) becomes

ϕj ≤
1∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣ +

vTi rij∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣3, (10)

Finally, by introducing r̂ij the normalized unit vector of rij, Eq. 10
becomes

vTi r̂ij ≤ ϕj

∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣ (11)

The robot’s velocity is reduced until the danger field value at the
obstacle location, denoted as o is below a threshold, i.e., a desired
danger value. Eq. 11 is re-written as

1We use the C++ wrapper for Fukuda’s cdd library available here: https://github.
com/vsamy/eigen-cdd, while the MATLAB© computations used the Multi-
Parametric Toolbox 3.0 (Herceg et al., 2013).
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vTi r̂io ≤ ϕd||rio||2 − ||rio||, (12)

ro is the obstacle’s position vector with respect to the robot’s fixed
frame and ϕd denotes desired danger value. By introducing Eq. 1,
the following expression is obtained in configuration space

r̂Tio Ji _q ≤ ϕd‖rio‖2 − ‖rio‖, (13)

where Ji ∈ R3×n is the Jacobian matrix at point i. The Jacobian
matrix at any CP will have n columns. However, if a joint does not
contribute to the velocity at the ith CP, the ith column of contains
only zeros. Hence, Eq. 13 constrains the maximum velocity for
the ith CP in the direction toward the obstacle. Taking into
account the l CPs leads to the following set of inequalities

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r̂ T
1o J1

r̂T2o J2
«

r̂Tlo Jl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ _q≤
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϕd‖r1o‖2 − ‖r1o‖
ϕd‖r2o‖2 − ‖r2o‖

«

ϕd‖rlo‖2 − ‖rlo‖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (14)

rewritten, for the kth obstacle, as

Jok _q ≤ bo. (15)

Eq. 15 considers the reduced performance capabilities due to
nearby obstacles. It is similarly convenient to consider the effects
of joint limit proximity in the polytope before transformation to
the Cartesian space, thus avoiding improper penalization due to
redundancy (Tsai, 1986; Abdel-Malek et al., 2004). For the ith

joint, the penalization term is defined as

ψmax
i � 1 − (max(qi, qi) − qi

qmax
i − qi

)k

, ψmin
i � 1 − (min(qi, qi) − qi

qmin
i − qi

)k

,

(16)

where qi is given as qi � 1
2 (qmax

i + qmin
i ), k is a positive integer,

ψmax
i varies from 1 to 0 as the ith joint approaches its limit. Eq. 4 is

modified to consider the joint limits

[ In
−In ] _q≤[ Ψmax _qmax

−Ψmin _qmin
], (17)

where Ψmax � diag(ψmax
1 . . .ψmax

n ) and Ψmin �
diag(ψmin

1 . . .ψmin
n ).

By repeating Eq. 15 form obstacles and including the position
constraints defined by Eq. 17, the following H-representation of
the joint-space polytope, denoted as QHp, is obtained

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jo1
Jo2
«
Jom
In
−In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
_q≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bo1
bo2
«

bom

Ψmax _qmax

−Ψmin _qmin

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

QHp can be converted to V-representation using the double
description method. The vertex form can then be transformed
to the task space using Eq. 1 and in doing so the CMP, denoted as
P* that characterizes the constrained task-space performance,
is obtained. The volume of P*, denoted w*

p measures the robot’s

velocity capacities while also considering joint position and velocity
limits and the constraints imposed by the environment.

2.4 Applications of Constrained
Manipulability Polytope for Humanoid
Robots
In the following, applications for the performance measure
are demonstrated using NASA’s humanoid robot Valkyrie
(Radford et al., 2015) interacting with a glovebox for nuclear
decommissioning task.

2.4.1 Experiment 1: Right Arm Insertion
In the first experiment the right arm of Valkyrie is inserted into the
glovebox. The glovebox is considered as an obstacle that reduces the
manipulator’s performance, as unwanted collision could be dangerous.
Figure 1 shows the right arm insertion task, demonstrating how the
CMPchangeswith time.The initial reduction inmanipulability is due to
positional joint limits. As the right hand passes through the glovebox
port the system experiences a reduction of velocity capacity due to the
constrained space signifying that the hand cannotmove quicklywithout
increasing the likelihood of a collision. A partial recovery can be
observed as the right hand is fully inserted, meaning the system can
manipulate objects within the space.

2.4.2 Experiment 2: Dual Arm Insertion
Convex polytopes are geometric objects, thus can be combined
through standard geometric operations. These combinations can be
used to represent composite robotic chains both serial and parallel. In
(Long and Padir, 2019), we have shown how the manipulability of
mechanisms in series can be obtained from theminkowski sumof sub-
mechanisms, while manipulability mechanisms in parallel can be
obtained by a straightforward concatenation of inequality constraints.

In this experiment, we demonstrate the former, as Valkyrie inserts
both arms into the glovebox. It is assumed that the two arms form a
closed chain, in a scenario where the arms carry a common object or
tool. The goal is to show how the CMP can be combined to obtain
that of a closed chain system. To model the closed chain, we use the
virtual object procedure, i.e., a rigid straight link extending from the
left to the right hand (Long et al., 2015). Figure 2 shows the motion
associated with the dual-arm insertion task at four time instants and
the CMP for the closed-chain system evaluated at the right-arm end
effector. This is obtained by first calculating Pr and Pl , then
obtaining the intersection Pr ∩ l , while Pp

r ∩ l is calculated in the
same manner. In the third instant Pp

r ∩ l � ∅, as clearly it is
impossible for the arms to enter through individual ports while
holding a common object. In contrast, in the fourth instant, Pp

r ∩ l is
no longer empty demonstrating the ability to co-manipulate an
object within the glovebox.

2.4.3 Experiment 3: Reachability Analysis
Finally, a reachability study/workspace analysis is presented in
Figure 3. The environment is discretized into voxels. At each
voxel, an optimization procedure obtains a feasible IK solution
while trying to maximize the robot’s distance to obstacles. The
CMP is calculated in this configuration. The workspace
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discretization is shown in Figure 3. The voxel’s color is defined by
the volume of w*

p, red implys high volume while blue implies
empty set. Figure 3B shows the volume of Pr and Pl along the
x − axis, i.e., along the centerline of the glovebox ports, while
Figure 3C shows the reduced volume forPp

r andPp
l . The increase

in manipulator capacities can be observed as the arms align with
the glovebox ports.

3 INCREASING STABILITY USING
SUPPORT CONTACTS

As nuclear facilities reach the end of their life cycle they must be
decommissioned in a safe and efficient manner. A particularly
dangerous task is the decontamination of gloveboxes that have been
previously used to manipulate radioactive material. Although a
robotic system that is specifically designed for glovebox operations
may be the best solution, humanoid robots are an attractive option
since they can operate in a variety of environments and use tools
that are designed for humans. While conducting operations within
the glovebox, the constraints imposed by the ports, gloves, and the
external structure, which effectively fix the arms at the entry points,
must be considered. The inability to alter body configuration greatly
diminishes the robot’s capacity to take steps in arbitrary directions.
This in turn leads to a danger of toppling during task execution as
the system cannot easily change the support polygon’s location.

Toppling occurs when the ZMP leaves the support polygon
(SP) (Vukobratović and Borovac, 2004). If the SP cannot be
displaced, alternative methods to maintain stability must be
employed. For example, in (Rasheed et al., 2018), the ZMP

position for a cable-driven mobile robot is modified online by
a tension distribution algorithm. In (Khatib and Chung, 2014), it
is shown that the SP size can be increased by using supplementary
contact points. Similar to these approaches, we propose to exploit
the contacts in the glovebox (i.e., leaning on the entry ports) in
order to shift the ZMP towards the center of the SP while
performing manipulation tasks.

This section presents our work on planning kinematic
motions with support contacts without a predefined contact
schedule that maintains the stability of the ZMP. To
accomplish this, we model rigid-body contacts using
complementarity constraints and solve a nonlinear constrained
optimization for joint velocities and contact forces. Owing to the
differentiable contact model, gradient-based optimization can
reason about contacts between the robot arms and the
glovebox ports. This optimization also respects constraints that
ensure an object is grasped by the end effectors, the ZMP is in a
safe region, and the deviation of the object’s position from a
desired position is acceptable. Furthermore, we present a null-
space-based torque controller that prioritizes the stability,
i.e., generating the support forces, and projects the torques
needed for the manipulation task onto the null space of the
support forces. The proposed methodology is tested through
2.5D, quasi-static simulations by considering a humanoid
robot with two planar arms manipulating a relatively heavy
object on an elevated plane representing the glovebox.

3.1 Related Work
For planning amotion with contact interactions, both the discrete
contact events (e.g., making/breaking contacts at certain

FIGURE 1 | Valkyrie inserting right arm into a glovebox and the evaluation of the manipulability polytope (red) and constrained manipulability polytope (blue) of the
right arm. A video of the task is available here: https://www.youtube.com/watch?v�FzlhsLH5IPU.
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FIGURE 3 | The space is discretized into 3D voxels. (A) At each voxel, the IK solution is obtained for the left arm (left images) and the right arm (right images). The
corresponding volume of the CMP is calculated for each voxel, giving a good understanding of the robot’s workspace. A video is available here: https://youtu.be/
jc7X4WakdoE (B) The MP’s volume wp, i.e, for the left (left image) and the right (right image) end effectors. The black square shows the location of the glovebox front
edge. (C) The CMP’s volume w*

p for the left (left image) and the right (right image) end effectors. High manipulability is possible far from the glovebox, the
manipulability is extremely limited once either arm enters the glovebox.

FIGURE 2 | Valkyrie inserting both arms into a glovebox shown at four timesteps along with the coordinating polytopes, Pr ∩ l and Pp
r ∩ l evaluated at the right end

effector. A video of the task is available here: https://youtu.be/1Nouc4f_rIY.
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locations) and the continuous variables (e.g., joint positions,
contact forces, stability constraints) must be considered. One
approach is to use a contact-before-motion planner such as those
presented in (Hauser et al., 2005; Escande et al., 2013). In this
case, first, a sequence of contacts at predefined locations is
determined, then a continuous motion is planned subject to
contact constraints. In contrast, in a motion-before-contact
planner, the contacts are obtained as a result of the motion
planning (Escande et al., 2013). Alternatively, contact-implicit
motion planning (also known as, motion planning through
contacts) can be used to plan for smooth motions and contact
events at the same level.

In contact-implicit motion planning, a differentiable contact
model is used to enable gradient-based optimization to reason
about contacts. Complementarity constraints are widely used to
model rigid-body contacts with friction, as proposed in (Stewart
and Trinkle, 1996; Anitescu and Potra, 1997). (Yunt and Glocker,
2005; Posa et al., 2014) use complementarity constraints to model
contacts in a trajectory optimization problem. The main idea here
is to consider the contact-related parameters as additional
optimization variables such that the contact events evolve
along with continuous motion variables. Such an optimization
problem can be solved locally through constrained nonlinear
optimization algorithms such as sequential quadratic
programming (Anitescu and Potra, 1997; Fletcher and Leyffer,
2004).

Once a kinematic motion with contact interactions is planned,
it can be executed using a null-space-based controller. Park and
Khatib (Park and Khatib, 2006) proposed a torque control
framework for humanoid robots with multiple contacts and
verified the method experimentally in (Park and Khatib,
2008). Moreover, they extended this method to a unified
hierarchical whole-body control framework for humanoid
robots in (Khatib et al., 2008). In this framework, tasks are
hierarchically ranked. Thus, the torques required for a lower-
priority task are projected onto the null-space of the Jacobian
matrix associated with a higher-priority task. In (Henze et al.,
2016a), a whole-body torque controller for humanoid robots is
proposed that combines passivity-based balancing proposed in
(Henze et al., 2016b) with a hierarchical null-space-based control
that is similar to (Khatib et al., 2008).

3.2 Methodology
3.2.1 Static Equilibrium
For being balanced, the robot needs to be in static equilibrium
(Vukobratović and Borovac, 2004). In this case, the static
equilibrium of the system can be evaluated considering the
following wrenches: the wrench due to the robot’s mass, the
wrenches at the end effectors due to the object wrench, and the
wrenches at the support contact points. Henceforward, we
enumerate the left and right arms as the first and second
arms, respectively.

In the static equilibrium, the net force must be zero:

∑ f � 00f r +mg +∑2
i�1

f si +∑2
i�1

f ci � 0, (19)

wherem is the total mass of the robot, gb[0, 0,−g]T is the gravity
vector, f si ∈ R3 is the force at the support point between the ith

arm and the glovebox port, f ci ∈ R3 is the force at the contact
point between the object and the ith end effector, and f r ∈ R3 is
the ground reaction force.

Additionally, the projection of the net moment, M onto the
horizontal xy plane must be zero, i.e., Mx � 0 and My � 0:

∑MH � 00(pr × f r)H + (pCoM ×mg)H +∑2
i�1

(psi
× f si +Ms,i)H

+∑2
i�1

(pci
× f ci +Mc,i)H � 0, (20)

where aH denotes the horizontal projection of a vector a,
pr , pCoM , psi, pci ∈ R3 are the positions of the ground reaction
force (i.e., the ZMP), the robot’s center of mass (CoM), the
support points on the glovebox ports and the contact points on
the object, with respect to the world frame. Ms,i,Mc,i ∈ R3 are
the moments at the support and grasp points. The position of
the ZMP, pr , is obtained by solving (Eq. 19, 20)
simultaneously. In order to avoid toppling, the ZMP must
lie in the support polygon (SP), namely, the convex hull of the
robot’s feet. The object wrench ho ∈ R6 can be obtained in
terms of the wrenches applied by the end effectors as follows
(Caccavale and Uchiyama, 2016):

ho � [Wc1 Wc2 ][ hc1

hc2
] � Whc, (21)

using the wrench matrix Wci ∈ R6×6 that transforms the wrench
at the ith contact point, hci ∈ R6, to the wrench at the origin of the
object frame, that is the center of the object in this case, and
given by:

Wci � [ I3 03
−r̂ci I3

⎤⎦
,

(22)

where r̂ci is the skew-symmetric matrix representation of the
vector from the ith contact point ci to the origin of the
object frame, and I3 and 03 are 3 × 3 identity and zero
matrices. Then, given the object wrench, the wrenches at
the end effectors can be calculated from hc � W+ho, where
W+ is the Moore-Penrose pseudo-inverse of the matrix
W ∈ R6×12.

3.2.2 Motion Planning
In this work, we ignore the dynamic effects and investigate the
quasi-static case for dual-arm manipulation of an object in a
confined space, i.e., a glovebox. In the following, robot’s joint
positions and velocities are denoted by q and _q, while those of the
ith arm are referred to as qi and _qi. The objective is to preserve the
robot’s balance during the manipulation task. In other words, our
goal is to find the joint positions that would keep the robot’s ZMP
in a safe region by leaning on the glovebox ports while
simultaneously maintaining the manipulated object’s desired
position. For this purpose, we form a nonlinear constrained
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optimization and solve it for the joint displacements and the
support contact forces.

In order to take into account the rigid-body contacts between
the robot and the glovebox ports, we use the following
complementarity constraints, as in (Anitescu and Potra, 1997;
Posa et al., 2014):

ϕ(q)≥ 0, (23a)

γ≥ 0, (23b)

γTϕ(q) � 0, (23c)

where ϕ(q) ∈ Rnp is the vector of signed distance for np contact
pairs, i.e., each pair comprises of a robot’s link and a contact
candidate in the environment; and γ ∈ Rnp is the vector of the
magnitude of normal support force. (Eq. 23a) prevents any
interpenetration, (Eq. 23b) ensures that the bodies can only push
each other, and (Eq. 23c) allows force generation only when bodies
are in contact. Thus, only one of these variables (either ϕ(q) or γ)
can be non-zero for a given time and contact pair. We relax the
complementarity condition (Eq. 23c) by converting it into an
inequality constraint through a slack variable and penalizing the
slack variable in the cost so that potential numerical issues are
mitigated, as described in (Fletcher and Leyffer, 2004; Manchester
and Kuindersma, 2017). For numerical efficiency, the
complementarity constraints, including the relaxation, are
evaluated elementwise, i.e., separately for each contact pair.

As a result, the following optimization problem is solved for the
joint displacements Δqbqk+1 − qk, the magnitudes of the normal
contact forces at the support points γ, and the slack variables s:

minimize
Δq,γ,s

w1

����pe
o

����2 + w2

����Δq����2 + w3‖s‖2 (24a)

subject to :

ϕ(q), γ, s≥ 0, (24b)

γTϕ(q)≤ s, (24c)

cg(q) � 0, (24d)����pd
r − pr

���� ≤ rs, (24f)����pe
o

���� ≤ ro, (24g)

where ‖ · ‖ is the Euclidean norm, wi is the weight (a positive
scalar) associated with the ith term of the cost function, peo is the
deviation of the object’s position from the desired position,
cg(q) � 0 ensures that the end effectors are grasping the
object, pdr is the desired position of the ZMP (i.e., the center
of the SP), and rs and ro are the radii of the safe circle (SC) for the
ZMP and the admissible sphere for the object position.

3.2.3 Torque Control
Using this optimization procedure, the robot configuration and
the support forces’ magnitude are obtained. Nevertheless, a
torque controller is necessary to execute the planned motions.

The torques necessary to generate the desired object wrench τh
can be obtained as:

τh � [ JT1 0
0 JT2

]W+ho � JTW+ho (25)

Ji ∈ R3×4 is the kinematic Jacobian matrix that maps the joint
velocities to the translational end-effector velocities for
the ith arm.

The support forces are oriented normal to the contacting robot
geometry. Hence, using the contact angle βi and the normal force
magnitude γ, the support force for the ith arm can be calculated as:

f si � [ cicos(βi) cisin(βi) 0 ]T . (26)

Similarly, the joint torques required to generate these forces,
denoted as τs, can be calculated as described in (Park and Khatib,
2008). In our case, there is a maximum of two supports points at a
given time, therefore:

τs � [ JTs1 0
0 JTs2

][ f s1
f s2

] � JTs f s. (27)

Jsi ∈ R3×4 is the Jacobian matrix that maps the joint velocities
of the ith arm to the translational velocities at the support point.

For the glovebox task, the support forces are crucial to
maintain the stability of the robot, while generating the
desired object wrench has a lower priority. Thus, we compose
the joint torques, τ such that the manipulation torques τh are
projected onto the null space of the stability torques:

τ � τs +Nsτh, (28)

where

Ns � Ind − JTs (J+Ts ) (29)

is the null space projector of the support forces, and nd is the DOF
of the whole robot. Consequently, the resulting joint torques
would generate the desired support forces to ensure the balance of
the robot and create an object wrench using the redundancy of
the robot.

3.3 Results
To test the proposed framework, we run simulation experiments
in which a humanoid robot that has two planar 4-DOF arms with
revolute joints manipulates a relatively heavy rigid bar on an
elevated plane. The robot’s arms pass through two ports
representing the glovebox. We neglect the dynamics
(i.e., velocities and accelerations) and assume point contacts
without friction. The weights are selected as w1 � 103,
w2 � 102, and w3 � 106. The initial values for all the decision
variables are zero. The radii of tolerance circles for the ZMP and
the object position are selected as rs � 0.15 m and ro � 0.1 m. The
masses of the robot and the object are 54 kg and 12 kg. The
desired motion of the object is in +y direction; hence, the desired
object wrench to generate an acceleration in this direction is given
as ho � [0, 10,−117.72, 0, 0, 0]T .

We investigate the task of moving the object 40 cm forward on
a straight path that consists of nine equally spaced waypoints. The
results are depicted in Figure 4. Each step of the motion is
indicated by a color from blue to red. In the initial configuration
(indicated by blue), the robot grasps the object from both ends.
During the simulation, the position of the ZMP is calculated with
and without the effect of the support contacts on the glovebox
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frame. The latter is known as the fictitious ZMP (FZMP)
(Vukobratović and Borovac, 2004) and may fall outside of the SP.

The results show that the contact-implicit motion planning
method can increase the stability of the robot using support
contacts while performing the manipulation task. The robot
makes contacts with the glovebox to maintain its balance
while moving the object on the desired path. As soon as the
FZMP leaves the SR in the second step, the right arm makes a
contact with the left end of the port to push the ZMP into the SR.
As the object moves further away from the base, the contact angle
is varied so that the magnitude of the support force in
−x-direction is larger. This is required due to the circular
shape of the SR. However, as object moves further from the
base, simply changing the contact angle is no longer sufficient,
thus the left arm also makes contact with the right end of the left
port. As a result, the object is successfully transported along the
desired path with a position error of 0.1 m (i.e., the allowed
deviation) in each step after the initial configuration.

A zoomed-in version of the SP area is depicted in Figure 4B to
show the change of the ZMP and the FZMP throughout the
simulation. Even though the FZMPmoves forward along with the
object’s position and leaves the SP eventually, the ZMP does not
leave the SR owing to the support forces. It is also noted that, in
Step 7 (indicated by yellow), the ZMP is more centralized with
respect to the y axis compared to the other steps due to the
symmetry of the support forces.

Figure 5 show the magnitudes of the support forces and the
joint torques with respect to the distance between the object and
the robot’s base. The magnitudes of the support forces are much
larger than the magnitude of the object wrench, and therefore the
torques are much more affected by the support forces than the
object wrench. This is why force and torque vs. distance
characteristics are quite similar—i.e., the torque is dominated
by the support forces (especially after Step 5). Moreover, the
changes of

����f s���� and ‖τ‖ with the distance are almost linear, as one

may anticipate. Apart from this, the magnitude of the support
force on each arm is quite similar to each other in Step 7, as
consistent with the observation regarding the more centralized
ZMP in this step. Except for Steps 1 and 7, the magnitude of the
support force on the right arm is always bigger than the one on
the left arm, which shifts the ZMP in +x direction. Such an
unbalanced distribution of forces might be undesirable since
higher joint torque limits would be required. Thus, enforcing a
more uniform distribution of the support forces may be a
future work.

4 DYNAMIC NON-PREHENSILE
MANIPULATION

There is an increasing need to carry out decontamination and
decommissioning tasks in safe and effective manner. A
particularly dangerous task is glovebox decontamination and
decommissioning that typically involves transporting debris
and objects from the interior of the glovebox to an exit port,
where they are bagged and removed (Long et al., 2018; Önol et al.,
2018). Such tasks do not always require dexterous manipulation
behaviors and instead simply require objects to be push from the
interior to the exit port of a glovebox.

Contact-implicit trajectory optimization (CITO) is a
promising method to generate contact-rich behaviors given
only a high-level definition of a task. In this approach, a
differentiable contact model is used to enable gradient-based
optimization to reason about contacts such that discrete contact
events and continuous trajectories are found simultaneously as a
result of smooth optimization.

In this section, we present a CITO method based on a variable
smooth contact model to plan dynamic non-prehensile
manipulation behaviors for a 7-DOF robot arm in a highly-
constrained environment. We demonstrate that the proposed

FIGURE 4 | (A) Planned motion for carrying an object on a straight path. (B) Zoomed in change of the ZMP and the FZMP (i.e., fictitious ZMP without supporting
contacts). throughout the task.
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method can solve complex tasks despite tight constraints imposed
by the environment by exploiting the smooth virtual forces.
Moreover, we experimentally verify that the physical
inaccuracy introduced by the residual virtual forces is
admissible and the motions found by this framework are
realistic enough to be run on the hardware.

4.1 Related Work
Complementarity constraints are widely used to model rigid-
body contacts in trajectory optimization (Yunt and Glocker,
2005; Posa et al., 2014; Gabiccini et al., 2018). This approach
can find complex motions, but it typically suffers from poor
convergence speed. Thus (Tassa et al., 2012; Mordatch et al., 2015;
Mastalli et al., 2016; Neunert et al., 2016; Manchester and
Kuindersma, 2017), use smoother fragments of the
complementarity constraints. (Neunert et al., 2017; Giftthaler
et al., 2017; Marcucci et al., 2017; Neunert et al., 2018), on the
other hand, define contact forces as a smooth function of
distance, i.e., a smooth contact model. Using such a contact
model, highly-dynamic complex motions for a quadruped robot
are planned and executed in real-time in (Neunert et al., 2018).
However, it is difficult to tune smooth contact models (Carius
et al., 2018), and the resulting motions may be physically
inaccurate due to the non-physical contact forces that act
from distance. In order to address these problems, we have
recently proposed a variable smooth contact model (VSCM)
(Önol et al., 2018) that injects virtual forces to the
underactuated dynamics with frictional rigid-body contact
mechanics, such that the states of the manipulator and the
objects are coupled in a smooth way. Furthermore, the
smoothness of the contact model is adjusted by optimization
such that large virtual forces are permitted in the initial phases of
optimization but vanish as the optimization converges. As a
result, the VSCM improves the convergence of CITO without
compromising the physical fidelity of resulting motions.

CITO has been used for animated characters (Mordatch et al.,
2021a; Mordatch et al., 2012b) and in robotics (Tassa et al., 2012;
Posa et al., 2014; Mordatch et al., 2015; Mastalli et al., 2016;
Manchester and Kuindersma, 2017; Neunert et al., 2017; Carius
et al., 2018; Neunert et al., 2018; Winkler et al., 2018). Although
this method is task independent and can be generalized to both
locomotion and manipulation problems, the majority of the

related literature considers only the former. On the other
hand, in (Mordatch et al., 2012a; Posa et al., 2014; Gabiccini
et al., 2018), manipulation tasks are investigated but their analyses
are either limited to a planar case or based on animated characters
where physical fidelity is not critical. Recently (Önol et al., 2018,
2019, 2020; Sleiman et al., 2019), used CITO for non-prehensile
manipulation tasks. Yet, they consider only tabletop pushing
scenarios. Moreover, in general, experimental results in this
domain are very limited, albeit with some notable exceptions
(Mordatch et al., 2015; Mastalli et al., 2016; Neunert et al., 2017,
2018; Giftthaler et al., 2017; Carius et al., 2018; Winkler et al.,
2018; Sleiman et al., 2019). Nonetheless, to the best of our
knowledge, there is no experimental verification of CITO for
constrained dynamic manipulation.

4.2 Methodology
4.2.1 Dynamic Model
The dynamics of an underactuated system consisting of an
na-DOF manipulator and nu-DOF objects that are subject to
frictional rigid-body contacts and virtual forces is given by

M(q)€q + c(q, _q) � STa τ + JTc (q)λc + STuλv , (30)

where qb[qTa , qTu ]T ∈ Rna+nu is the configuration vector;
M(q) ∈ R(na+nu)×(na+nu) is the mass matrix; c(q, _q) ∈ Rna+nu is
the bias term comprising of the Coriolis, centrifugal, and
gravitational effects; Sa � [Ina×na 0na×nu] is the selection matrix
for the actuated DOF and Su � [0nu×na Inu×nu] is the selection
matrix for the unactuated DOF; τ ∈ Rna is the vector of
generalized joint forces; λc ∈ R6nc is the vector of generalized
contact forces at nc external contact points and
Jc(q) ∈ R6nc×(na+nu) is the Jacobian matrix mapping the joint
velocities to the Cartesian velocities at the contact points, and
λv ∈ Rnu is the vector of generalized virtual forces on the
unactuated DOF. For nf free bodies in SE (Eq. 3) (e.g.,
objects), nu � 6nf . The state of the system is represented by
xb[qT _qT ]T ∈ Rn where n � 2(na + nu).

In this study, τ is decomposed as τ � τu + ~c, where ~c ∈ Rna is
an estimation of the non-zero part of STa c(q, _q) and τu ∈ Rna is
the vector of control variables in terms of generalized joint forces.
As a result, the control term τu is linearly related to the joint
accelerations in the absence of external contact.

FIGURE 5 | The magnitudes of (A) the support forces vs. the distance of the object from the base, and (B) the joint torques vs. the distance of the object from
the base.
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4.2.2 Contact Model
The virtual forces generated by the contact model acts upon the
unactuated DOF in addition to the external rigid-body contacts.
Consequently, the robot’s and objects’ dynamics are related
through the virtual forces. We assume an exponential
relationship between the magnitude of the normal contact
force c and the signed distance between paired contact
geometries ϕ, as depicted in Figure 6. While frictional forces
are not considered in this contact model, the rigid-body contact
mechanics [i.e., λc in (Eq. 30)] are frictional. Hence, the resulting
motions include frictional contacts once the virtual forces vanish.

For the ith contact candidate, the magnitude of the normal
contact force is calculated from the virtual stiffness ki and αi that
determines the curvature:

ci(x) � kie
−αiϕi(x). (31)

This model is analogous to a spring model and (Marcucci
et al., 2017) lists several reasons for not using damping (i.e., a
velocity term) in such a contact model. The corresponding virtual
force effective at the center of mass of the free body associated
with the contact candidate λv,i ∈ R6 is:

λv,i(x) � ci(x)[ I3
l̂i
]ni(x), (32)

where I3 is 3 × 3 identity matrix; li is the vector between the end
effector and the center of mass of the object that is associated with
the contact candidate; l̂i is the skew-symmetric matrix form of li;
and ni ∈ R3 is the unit vector that is normal to the contact surface
on the object. Hence, the net virtual force on an object is the sum
of the virtual forces associated with the contact candidates on that
object.

In the variable smooth contact model, the virtual stiffness k for
each time step and contact pair is a decision variable of
optimization and initialized with a large value such that there
is a non-zero virtual force on each contact candidate.

Nonetheless, the virtual forces are penalized as an integrated
cost, so that they vanish as the optimization converges, see
Figure 6. This approach helps to discover contact candidates
that are initially distant.

4.2.3 Trajectory Optimization
In this study, the optimal control problem is transcribed into a
finite-dimensional nonlinear constrained optimization by
assuming constant control inputs over N discretization
intervals. Final cost terms penalize the deviations of the
objects’ poses from desired poses, peo and θeo. Integrated cost
terms are defined in terms of the velocities _x and the virtual forces
γ. As a result, the final and integrated components of the cost (cF
and cI) are calculated in terms of the weights w1,...,4, the control
sampling period tc by:

cF � w1

����pe
o

����2 + w2

����θeo����2, (33a)

cI � tc∑
i�1

N (w3‖ _xi‖2 + w4

����γi����2). (33b)

The following optimization problem is solved by a sequential
quadratic programming (SQP) algorithm by rolling out the
dynamics:

minimize cF + cI
τu,1,...,N , k1,...,N

(34a)

subject to : τu,L ≤ τu,1,...,N ≤ τu,U , 0≤ k1,...,N ≤ k0. (34b)

The lower and upper bounds for the control variables τu,L and
τu,U are determined from the torque limits of the robot. However,
it is noted that the bias in the torque decomposition, ĉ, is not
considered while setting the torque limits. The virtual stiffness
variables are bounded above by their initial values k0, which is
selected as a large value to facilitate convergence.

4.3 Experiments
4.3.1 Application: Non-Prehensile Manipulation in a
Glovebox
Our overall objective is to enable a robot to carry out such
manipulation tasks with only high-level commands such as
desired object poses. Figure 7D shows Sawyer, a 7-DOF robot
arm, and a mock-up glovebox environment. Non-prehensile
manipulation is advantageous in this case, as the highly-
constrained environment means that grasp configurations are
difficult to obtain. Thus, we consider non-prehensile
manipulation tasks in a glovebox.

The proposed method is tested in three different scenarios of
increasing complexity: 1) pushing an object on a table, Figure 7A-
C 2) pushing an object in a glovebox, Figure 7D-F, and 3) ejecting
an unreachable object from the glovebox by exploiting physical
interactions in the environment, Figure 7G-I. In the first case,
there is a (red) box on a table and the task is to move it 20 cm
along the x axis, see Figure 7A for the reference frame. In the
second case, the task is to move the object 10 cm along the −y axis
in the glovebox, Figure 7D. In the last case, two boxes that are
placed next to each other are considered, as shown in Figure 7G,
and the task is to eject the one that is further away from the robot
(i.e., the blue box) from the glovebox. In other words, this task

FIGURE 6 | The relationship between the virtual force and the distance.
k0 represents the initial value of the virtual stiffness k, and the arrow shows the
evolution of the virtual forces throughout optimization.
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requires moving the blue box at least 15 cm along the −y axis so
that it will leave the glovebox through the exit port. In all cases,
the desired rotation is zero.

4.3.2 Experimental Setup
In the experiments, standard and commercially-available
hardware2 is used in order to facilitate reproducibility. The
dynamics is modeled using MuJoCo physics engine (Todorov
et al., 2012) with time steps of 5 ms while the control
sampling period is 50 ms. The SQP solver SNOPT (Gill
et al., 2005) is used to solve the optimization problem. As an
interface between MuJoCo and SNOPT, IFOPT (Winkler et al.,
2018) is employed. The planned position, velocity, and
acceleration trajectories are interpolated with 10 ms steps
and executed on the robot by using the built-in inverse
dynamics feed-forward controller of Sawyer. For detecting
the poses of the objects and the glovebox through the head
camera of Sawyer, AprilTag 2 algorithm (Wang and Olson,
2016; Malyuta, 2017) is used.

For all cases, the weights are w1 � 103, w2 � 103, w3 � 1, and
w4 � 1. The initial trajectory is set at zero torque values. The initial
value and the upper bound for the virtual stiffness is 5 N/m for the
red box and 1 N/m for the blue box, since the blue box is lighter
than the red box. α in Eq. 31 is selected such that c � k0 × 10−2 for
each contact candidate in the initial configuration. Namely, the
optimization is started with a trivial initial guess in which the robot
stands still for the whole simulation, and there is no heuristic
regarding the contact interactions for any task.

4.4 Results
Figure 7 demonstrates initial, intermediate, and final snapshots
from the experiments. Table 1 shows the position and orientation
deviations for the object (

����peo���� and ����θeo����) for the simulation and
hardware experiments and the discrepancy between them.
Additionally, the physical inaccuracy caused by the residual
virtual forces ψ � tc∑

i

����γi���� is shown for the simulations. For the
last case, only δ

����peo���� and δ����θeo���� for the red box are shown since the
blue box is ejected (i.e., could not be tracked) and there is no
desired pose for the red box.

Despite the trivial initial guess and no additional tuning for
different tasks, the proposed method is capable of finding a
motion that successfully completes each task in simulation.
That is, the object is moved to within 1-cm radius of the
desired position while the change of orientation is negligible

FIGURE 7 | Snapshots from the hardware experiments: pushing an object on a table (A–C), pushing an object within a glovebox (D–F), manipulating an
unreachable object by exploiting inter-object contacts (G–I).

2Information regarding the glovebox (https://www.belart.com/bel-art-h50026-0000-
sidentry-glove-box-30-x-24-x-24.html): and the objects (http://www.melissaanddoug.
com/deluxe-jumbo-cardboard-blocks—40-pieces/2784.html): are available online.
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(i.e., smaller than 15°). It is noteworthy that in the second and
third cases, the glovebox port imposes tight constraints on the
motion and the workspace of the robot, yet still our method can
handle this without any additional penalties or constraints for
collisions with the glovebox or tuning. Moreover, the last task
requires the blue box to have a high velocity when the contact
between it and the red box is broken because when the red box
collides with the yellow box that is under the blue box, the red box
cannot apply a force on the blue box anymore and the blue box
would still be in the glovebox. Thus, using a non-dynamic planner
or running the resulting motions through a position controller
without velocities and accelerations would not work in this case.

A more detailed numerical analysis of the experiments is given
in the following. In the simulation for Task 1, the box is moved
19.8 cm along the x axis and 0.7 cm along the y axis; whereas, in
the hardware experiment, the box is pushed only 15 cm along the
x axis and 0.5 cm along the y axis. For Task 2, the displacements
of the box along the −y and x axes are 9.8 and 0.8 cm in the
simulation. In the experiment, the box is moved 8 cm along the
−y axis, which is satisfactory, but also 7 cm along the −x axis due
to the relatively large rotation (ca. 20°) about the z axis. In Task 3,
the blue box is ejected from the glovebox, namely the task is
completed, both in the simulation and the hardware experiment.
Since the final position of the blue box could not be detected in
the experiment, only the final positions of the red box are
compared here. In the simulation, the red box is moved
10.8 cm along the −y axis and 0.4 cm along the −x axis, and
these quantities are 7.5 and 0.3 cm for the hardware experiment.

On average, the position and orientation discrepancies
between the simulation and hardware experiments are 5 cm
and 12°. Such differences can be deemed reasonable since we
playback the planned trajectories on the robot using a naive joint-
level controller, i.e., without a closed-loop controller that tracks
and compensates for the deviation of the object’s trajectory from
the planned one. The deviations of the executed motions from the
planned motions are expected considering errors caused by
modeling and perception. The main goal of this study is to
show that the proposed method can solve for complex tasks
by exploiting the smooth virtual forces and the residual non-
physical forces do not hinder the task performance.

5 IN-SITU TERRAIN CLASSIFICATION AND
ESTIMATION

Robust locomotion on deformable terrains is necessary for biped
humanoid robots to perform tasks effectively in unstructured

environments. The knowledge of deformable terrain properties,
particularly the stiffness, has major implications in modeling the
robot walking dynamics, which is the key to achieve stable gait
patterns. Prior studies on walking stabilization chose to model
such walking dynamics using pre-identified stiffness or damping
constants (Wittmann et al., 2016; Wu et al., 2018; Hashimoto
et al., 2012). However, it is unlikely for robots to access such
terrain properties in advance when deployed to unknown
environments.

In this section, we present an in-situ ground classification and
estimation method that can be used to improve the stability of the
robot while traversing unknown terrain, utilizing NASA’s
humanoid robot Valkyrie (Radford et al., 2015). The terrain
estimation works in two steps: i) The robot tries to identify
the terrain type from a database. If the terrain is recognized, all
needed data can be retrieved and used by the controller. ii) If the
terrain is classified as an unknown type, the robot then estimates
its stiffness by using Bernstein-Goriatchkin (Ding et al., 2013;
Caurin and Tschichold-Gurman, 1994) pressure-sinkage model.
The estimated stiffness can then be fed to stabilizers such as the
one proposed in (Hashimoto et al., 2012).

5.1 Related Work
Our study on robot foot-terrain interaction is inspired by
(Skonieczny et al., 2014), where the interaction between soil
and single wheel is analyzed using optical flow techniques.
Computer vision techniques have been widely used for terrain
classification in the past (Weiss et al., 2008; Brandão et al., 2016).
However, due to the poor lighting conditions in the outer space, it
is desirable to augment vision-based techniques with a terrain
classification approach that relies on physical contacts between
the robot foot and the terrain. We thus aim at providing a “sense-
of-walking” to the robot by using on-board sensors. In (Walas
et al., 2016; Otte et al., 2016), ankle mounted force/torque sensors
and accelerometers are used, respectively, to achieve terrain
classification. Our approach is comparable to (Otte et al.,
2016) as Recurrent Neural Networks (RNNs) are used but
they differ in the aspect that we perform terrain classification
with a bipedal robot while (Otte et al., 2016) uses a wheeled
mobile robot. To describe terrains’ properties under pressure,
various pressure-sinkage models have been studied in the past
(Komizunai et al., 2010; Ding et al., 2013). There is no common
opinion on which model is better than others. We choose
Bernstein-Goriatchkin model considering it is one of the most
commonly used models and it is relatively easy to implement. The
method we developed for terrain estimation can be viewed as an
extension of (Will Bosworth1 and Hogan, 2016), where spring

TABLE 1 | Numerical results from simulation and hardware experiments for all cases.

Task Simulation Experiment Discrepancy

ψ [N-s]
����pe

o

���� [m]
����θeo���� [rad]

����pe
o

���� [m]
����θeo���� [rad]

����pe
o

���� [m]
����θeo���� [rad]

1 0.8847 0.0025 0.2772 0.0495 0.0112 0.0470 0.2660
2 1.0698 0.0085 0.1222 0.0777 0.3404 0.0692 0.2182
3 0.1466 N/A N/A 0.0336 0.1562
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model is used to estimate the ground stiffness by measuring the
force and leg displacement during the interaction between a
quadrupedal robot, Super Mini Cheetah (SMC), and the
ground. Since SMC has spherical shaped feet, point contacts
are used when modeling the foot-terrain interaction. This is not
applicable for bipedal robots with flat soles because the support
force on sole is distributed unevenly. To overcome this challenge
(Caurin and Tschichold-Gurman, 1994), develops a special
sensor system consisting of multiple sensor cells to measure
the force distribution. Instead of using additional sensors, our
approach achieves estimation for stiffness using a single load cell
which provides only a net force measurement.

5.2 Terrain Classification
To study the foot-ground interaction, we designed a set of
experiments involving Valkyrie interacting with four types of
terrains, including wood mulch, rubber mulch, mason sand, and
gym foam mats. A custom sandbox, as seen in Figure 8, was built
for Valkyrie to stand in and perform a set of pre-designed
motions. Half of the sandbox is covered by a wood plate,
where Valkyrie can stand stably, and the other half is filled
with specified deformable ground materials to be tested. The
sandbox is not used when testing on the gym foam mat, which
Valkyrie can stand on directly. The data for terrain classification
and estimation is collected by commanding Valkyrie to perform a
touch-land motion.

Valkyrie starts from standing on the wood plate of the sandbox
and then moves the right foot onto the terrain. During this
motion, Valkyrie slowly moves the center of mass (CoM) from
the left foot to the center of the two feet (Figure 8). The support
force on the right foot increases from zero to approximately

650 N, which is about half the weight of Valkyrie, in this process.
Valkyrie then moves the right foot back onto the wood plate and the
motion is finished. The right foot force and torque changes during
this motion are measured by the load cell. Meanwhile, the right foot
sinkage in the terrain is also calculated using joint positions.

One method to calculate the foot sinkage, δ, is to use the
kinematic chain of the robot. Transformation matrix from
coordinate frame RightFoot1 to RightFoot2 is denoted with
R1TR2 representing the transformation of the right foot at two
different poses. RightFoot1 corresponds to the foot pose when the
foot makes contact with the terrain. Since Valkyrie keeps its foot
flat during the swing, it is reasonable to take RightFoot1 as the
fixed ground frame. RightFoot2 is the frame when the foot sank in
the soft terrain. There could be many different choices for
RightFoot2. Using the transformation R1TR2, we can attain the
position for each specific point of the sole relative to ground as
R1TR2 · P, where P � [x, y, 0, 1]T is the coordinates in RightFoot2
frame. The sinkage δxy can then be represented as the third
element of R1TR2 · P, denoted as R1TR2 · P · P(3). To get R1TR2, we
introduce a third coordinate frame LeftFoot. Since Valkyrie’s left
foot is stationary during the experiments (right foot taking the
step), we take LeftFoot as the reference coordinate frame. Using
the robot’s kinematic chain, we can get LTR1,

LTR2, and thus
R1TR2.

We use RNNs, particularly Long Short-Term Memory
(LSTM) network, to classify the terrain. Comparing to other
classification methods such as Support Vector Machine (SVM),
the use of RNNs gains us two advantages. First, our method can
be applied to a raw data stream rather than accumulated data over
time, thus, we can achieve terrain classification in real-time.
Second, it has been shown that RNNs have better performance

FIGURE 8 | Valkyrie is performing the touch-land motion. The red arrow represents CoM and yellow arrow represents support force on each foot.
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than SVM (Otte et al., 2016) and we achieved 95% accuracy on
average during experiments.

Fifteen features are selected as input for the LSTM network,
which are: right foot force in X, Y, Z directions, right foot torque in
X, Y, Z directions, pitch/roll angular displacement/acceleration of
the right ankle, pitch/roll angular torque of the right ankle, and the
right foot sinkage, represented by the first three elements on third
row of the transformation R1TR2. One data set is collected when
Valkyrie performs one touch-land motion for one specific terrain.
In total, we collected 30 data sets for the foam mat, 30 data sets for
the wood mulch, 34 data sets for the rubber mulch, and 42 data sets
for the sand. 90%of the data sets (118 data sets) are used for training
and the rest (18 data sets) are used for testing. The LSTM network
thus has 15 input neurons, one hidden layer with 64 hidden blocks
and one linear output layer with four neurons. A softmax function
is used to determine the terrain type. For each experiment run, the
model is trained with a fixed learning rate of 0.0005 for 16 epochs.
To track the performance of our model, the prediction accuracy is
calculated using the test data set after each training epoch. Out of
the five experiment runs, we achieved 100% prediction accuracy for
four runs and 89% accuracy for the remaining one.

5.3 Terrain Estimation
Although the RNN based classification method works well, there
are chances that Valkyrie may encounter with terrains of
unknown type. To handle such situations, a method that can
estimate an unknown terrain’s stiffness, which governs the foot
sinkage behavior under load, is desired.

5.3.1 Terrain Stiffness Model
To describe the terrain’s stiffness, the well-known pressure-
sinkage model developed by Bernstein-Goriatchkin (Caurin
and Tschichold-Gurman, 1994; Ding et al., 2013) is used:

σ � k · δn (35)

where σ(Pa) is the normal pressure, k(Pa/mn) and n(non −
dimensional) are the terrain parameters and δ(m) is the foot
sinkage in terrain. The two terrain parameters, k and n, are to be
estimated by using data from Valkyrie’s on-board sensors. The
challenge here is that Valkyrie uses only one 6-axis load cell
mounted at the ankle to measure support force acting on the
foot, which cannot provide a detailed force distribution upon sole.
Ideally, Bernstein-Goriatchkin model can be easily implemented to
determine the terrain stiffness when the terrain undergoes an even
and flat sinkage, as seen in Figure 9A. However, when a bipedal
robot walks on deformable terrains, the sinkage is usually non-
uniform, thus the contact surface between the foot and the ground
could be oblique, as seen in Figure 9B.

In this case, it is impractical to identify the sinkage value
corresponding to the pressure calculated from the measured force
on ankle. To handle this mismatch, we calculate the net force
acting on the sole resulting from different levels of sinkage using
the following equation

F � ∫∫
A

σ(x, y) dA � ∫y2

y1

∫x2

x1

k · δnxy dxdy (36)

where F is the net force acting on the foot, δxy is the local foot
sinkage at (x, y) expressed in the foot frame. The contact area
between the foot and the ground is defined by (x1, x2) and
(y1, y2), which are also expressed in the foot frame. These same
parameters are used to calculate the torque values for verification,
thus we pick the projection of the ankle in the foot frame as the
origin. The contact area for Valkyrie is then defined as (−0.09 m,
0.18 m) along the x-axis and (-0.08 m, 0.08 m) along the y-axis
based on the physical dimensions of the robot. Since F can be
measured directly, using Eq. 36, we obtain k and n once we know
the sinkage at different positions of the foot, i.e., δxy . The sinkage
δxy can be calculated using the same frame transformation
method described in Section 3. Eq. 36 can then be written as

F � ∫y2

y1

∫x2

x1

k · (F1TF2 · P(3))ndxdy (37)

Theoretically, if two sets of F and F1TF2 for the sinking foot of
different states are provided, we can solve for k and n using Eq.
37. It is worth mentioning that in Eq. 37, both transformation
F1TF2 and support force F can be calculated or measured in real-
time. Contact range x and y are pre-defined based on the foot
dimensions. Therefore, this method can estimate the unknown
terrain’s stiffness in-situ.

5.3.2 Experiments and Results
To test the proposed estimation method, we run four
experiments: two with gym foam mats (Gym Foam Mat one
and two), Rubber Mulch, and Mason Sand. The same touch-land
motion as described in Section 5.2 is performed by Valkyrie to
collect data for terrain estimation. The support force acting on
Valkyrie’s right foot and the frame transformation F1TF2 are
recorded during each touch-land motion. Nonlinear Least-
Squares Data Fitting (Coleman and Li, 1996) is then used to
solve for parameters k and n. Table 2 shows the estimated
parameters for four tested terrains. The pressure and sinkage
relationships of the four terrains with the estimated parameters
are depicted in Figure 10. We intuitively realize that the
estimation results are not valid for the sand. This is because
the sand is known to be stiffer than both foam and rubber mulch
but Figure 10 shows that the sand is estimated to be the softest.
The reason of inaccurate estimation for sand is that the sand
demonstrates a much smaller deformation under the same
pressure compared with the form and the rubber mulch.
During the experiments, the foam mat and the rubber mulch
have a deformation between 20 and 25 mm while the sand has a
deformation between 5 and 10 mm, which is a section that is too
short to do regression for solving k and n.

To validate the estimation results for the foam mats and the
rubber mulch, we compare ankle torques measured from the load
cell with ankle torques calculated using the estimated parameters.
We choose torque comparison as the validation approach for one
practical reason: many bipedal robots walking algorithms keep
the robot balanced by tuning torques at the ankle (Kim et al.,
2007; Kang et al., 2012). We thus posit that a set of terrain
parameters that can correctly predict torque changes can be
useful in walking algorithms for keeping robots stable on
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deformable terrain. When Valkyrie’s foot lands on the terrain, the
torque measured at the ankle should be equal to the torque caused
by the force acting on the sole around the ankle axis. Considering
the torque caused by gravity, we have.

τankle � τf + τg (38)

where τankle is the net torque measured at the ankle; τg is the
torque due to gravity, which equals to the measured torque at the
ankle during the swing; τf is the torque due to support force
resulting from terrain deformation. Since we now have parameter
k and n for the terrain, using Eq. 36, the pitch and roll torque can
then be calculated as

τpitch � ∫y2

y1

∫x2

x1

kδnxyx dxdy, τroll � ∫y2

y1

∫x2

x1

kδnxyy dxdy (39)

Figure 11 shows the comparison between the calculated
foot pitch and roll torques using estimated parameters and
measured foot pitch and roll torques from the ankle load cell.
The blue curves represent the measured results while the red
curves stand for the estimated results. The plots show that the
estimated parameters can predict the foot pitch torque well. As
for the foot roll torque, the estimated results match the trend of
torque changes with an offset of 1.5 Nm on average. One
possible source of this offset is the friction between the foot
and the terrain. The friction coefficient between the foot and the
terrain is currently not estimated and is planned as the
future work.

To numerically examine how well the estimated parameters
predict the foot pitch torque, we calculate the Normalized Root-
Mean-Square Error (NRMSE) between the estimated pitch
torques and the measured pitch torques. The Gym Foam Mat
one and two show a NRMSE of 15.9 and 15.7%, respectively,
which is the equivalent to an accuracy of 84.1 and 84.3%. While
the Rubber Mulch showed an NRMSE of 24.2%, which is an
accuracy of 75.8%. Since the estimated parameters from the Gym
Foam Mat one and two and Rubber Mulch experiments can well
predict foot pitch torque (an average accuracy of 80%) and roll
torque (same trend but with an offset), we assert that the
proposed method can be used to measure the stiffness of an
unknown deformable terrain. Future work will focus on
improving the estimation accuracy, including estimation of
friction coefficient for a thorough knowledge of unknown
terrains.

6 USER INTERFACE

Supervisory-control interfaces are an important aspect to robots
in extreme environments as you often want a human-in-the-loop
to help evaluate and make decisions for critical objectives of a task
at hand. In any supervisory-control interface, it is important to
find the balance of control between robot and human. Too much
control or autonomy on the robot side leaves the human unable to
potentially provide valuable feedback to the robot. While too
much control on the human side can leave the operator
overwhelmed with information and decision making, leaving

FIGURE 9 | Contact between the foot and ground terrain. (A) Even sinkage when the contact is flat. (B) Non-even sinkage when the contact is oblique.

TABLE 2 | Estimated stiffness parameters k and n for tested terrains using
Bernstein-Goriatchkin Model.

Terrain k (103Pa/mn) N Validity

Gym foam mat 1 1167.861 1.367 Good
Gym foam mat 2 609.296 1.212 Good
Rubber mulch 1738.93 1.45 Good
Mason sand 421146.385 3.00 Poor

FIGURE 10 | Relationship of pressure and sinkage for different terrains
using estimated parameters.
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less focus for the critical elements of a given task. Additionally, too
much control on the human side tends to increase the interface
complexity and therefore increase the amount of required operator
training to utilize the interface.

In this section, we present our work on a computer-based,
supervisory-control interface for NASA’s humanoid robot
Valkyrie (Radford et al., 2015), that aims to balance the
supervisory-control to allow for relatively untrained operators.
Our interface was originally designed to accomplish the tasks put
forward by the Space Robotics Challenge, a challenge using a
simulated Valkyrie robot in a virtual, mock-upMars environment
with tasks such as turning valves, moving equipment, and
inspection. However, our interface was purposely designed to
be generic enough to accomplish a wide variety of tasks and not
require tasks to be pre-programmed into the interface and is
therefore extendable to a wide variety of domains.

6.1 Related Work
The DARPA Robotics Challenge (DRC) was a two-year challenge
with the goal of accelerating progress in human-supervised
robotic technology for disaster-response operations. The DRC
helped support development for a variety of robotic research,
with one key area being the design of human-robot interaction
with focus on supervisory control methodologies (Yanco et al.,
2015; Norton et al., 2017). The DRC allowed for a variety of
supervisory-control interfaces for humanoid robots to be
developed furthering the state-of-the-art. However, most of the
developed interfaces required multiple well-trained operators in

order to successfully complete tasks (Norton et al., 2017). Several
interfaces aimed to reduce the amount of input required on the
human operator, but still allowed operators to take over low-level
commands of the robot when needed and provided a wide range
of robot sensor data (Stentz et al., 2015; DeDonato et al., 2017).

6.2 Interface
OurValkyrie interfacewas designed tomimic several of the humanoid
interfaces designed for the DRC finals, but with a reduced number of
capabilities, inputs, and sensor data to allow for both a single operator
and to reduce operator training time. The goal was to create a
comparable interface to ones used at the DRC, but user-friendly
enough to allow for non-experts to quickly learn and operate.

Our interface, as seen in Figure 12, utilizes RViz, a 3D
visualization tool for ROS, and custom Qt Widgets, also known
as Panels in RViz. RViz was chosen as the interface backbone since
ROS is widely used in the robotics community making it familiar to
many and for its built-in data visualization tools. RViz was also used
for several of the interfaces designed for DRC (DeDonato et al.,
2015; Kohlbrecher et al., 2015; Stentz et al., 2015). The interface can
be broken down into four custom panels: Arm Motion Planner,
Step Planner, Neck Interface, and Hand Interface. Additionally,
there are three built-in RViz panels: themain visualization window,
a display panel, and a camera feed panel.

The main window consists of the built in 3D data visualization
of RViz and for our specific interface includes a point-cloud from
Valkyrie’s Multisense SL sensor located in the head, a robot
model of Valkyrie’s current joint state and planned joint state

FIGURE 11 | Foot pitch and roll torque comparison. Blue curves stand for measured torques and red curves represent the estimated torques.
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from the arm motion planner, and interactive markers to
interface with the arm motion and step planners. The display
panel allows users to select what is actively visualized in the main
window and the camera feed panel for our interface is a camera
feed from one of the stereo cameras in the Multisense SL.

6.2.1 Arm Motion Planner Panel
The Arm Motion Planner panel utilizes a whole body inverse
kinematics solver that finds motion plans based on a set of cost
and constraints (Long et al., 2016, 2017). Cost and constraints can
be categorized as either kinematic, collision avoidance, or ZMP.
To reduce the complexity of the interface, operators only need to
define the desired end-effector positions and a predefined set of
cost and constraints are used, i.e., balancing constraint or velocity
cost, etc. To define the end-effector positions, operators can add
waypoints for the end-effector to traverse though. This is
accomplished through the use of interactive markers that
represent a waypoint and are visually represented as a single
end-effector. Operators are able to translate and rotate the
waypoint by using arrows and circular scroll bars that
surround the marker visual. The waypoints are ordered to
allow for a variety of paths. A plan can be requested after the
waypoints have been placed in a satisfactory manner. Operators
are provided a planning indicator and are informed when the
planning is complete and whether the planner was successful in
finding a plan or unsuccessful. If a plan returns unsuccessful, then
the returned plan either violated one of the default set of costs or it
was unable to traverse through all the placed waypoints.
Operators are notified of the reason the planned returned
unsuccessful and informed on how to improve the waypoints
to results in a successful plan. For example, a waypoint may be out
of the robot’s workspace and need to bemoved closer to the robot.
After a plan is returned, the operator can visualize the robot’s

movement through the entire plan before allowing the robot to
execute it to ensure that the plan both provides the desired
outcome and is collision free. Figure 12B demonstrates an
example of placed waypoints and the final robot configuration
of the returned plan. After visualizing the plan, operators can
request the robot execute it.

6.2.2 Step Planner Panel
The Step Planner panel allows operators to designate a goal
position for the robot to navigate to. It works in a similar
strategy as the Arm Motion Planner panel, except rather than
multiple waypoints, there is only a single waypoint that represents
the final goal pose for feet with a visual of a pair of feet.
Additionally, the interactive marker that represents the
waypoint only allows for 2D interaction on a plane. After this
single waypoint is placed, operators can request a plan which is
generated using an A* search-based footstep planner. Same as
the Arm Motion Planner panel, operators are provided a
planning indicator and informed when the plan returns. As
soon as a successful plan is found the planner will return.
However, the planner will infinitely plan until a successful
plan is found, therefore, there is a 10 s timeout in place to
force a return and the operator is notified of this timeout and to
try again. As soon as a successful plan is returned, colored
interactive markers that represent each footstep in the returned
plan are visualized, red for the right foot and blue for the left
foot. These interactive markers can be adjusted by the operator
by clicking on the footstep marker to activate the interactive
marker controls and then adjusting the footstep in the same
method as the waypoints, the interactive marker controls can
also be switched off by clicking the footstep marker. Figure 12C
shows an example of a placed goal marker, a returned footstep
plan, and selected footstep in adjustment mode. When finished

FIGURE 12 | Valkyrie interface.
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making adjustments, operators are then able to send the plan to
the robot for execution.

6.2.3 Neck Interface and Hand Interface Panels
The Neck Interface and Hand Interface panels both work in the
same manner with a series of joint sliders and buttons with some
predefined joint positions. The Neck Interface panel allows
operators to move the head of the robot right-left and up-
down with sliders and a predefined neutral position, where the
robot is looking straight forward. The Hand Interface panel has
sliders for each individual finger to open-close along with two
predefined open hand and closed fist grasp. Sliders were added
over additional grasp types to allow the operator to position the
hand at any intermediate pose if needed.

7 CONCLUSION

Humanoid robots are equipped with the necessary combination of
location and manipulation capacities to fulfill a variety of roles in
man-made hazardous environments. However, there are numerous
challenges before this potential can be realized. In this paper, we
presented our research to help further the development of utilizing
humanoid robots in supervisory roles for extreme environments,
with emphasis on operation in nuclear facilities.

We first examined ways to improve manipulation within
constrained environments, with a focus on glovebox operation,
by looking into three different areas. First, we aimed to better
understand a robot’s feasible workspace in constrained
environments by developing a method called the constrained
manipulability polytope (CMP) that considers both the robot’s
capabilities and the constraints imposed by an environment. The
CMP methodology assists in both autonomous motion planning
and human-in-the-loop teleoperation by providing feedback of
the robot’s workspace to the operator and indeed by providing a
representation of both robot joint and Cartesian space constraints
as a bounded limits in tool motion. Second, we investigated using
contact supports to increase stability and we presented our
theoretical methodology to accomplish contact-implicit motion
planning. The objective of this work was to increase the robot’s
workspace by using support contacts to reach areas that are not
within the robot’s workspace without support. Third, we
considered using non-prehensile manipulation over dexterous
manipulation and presented a methodology capable of pushing
objects in a constrained environment. The purpose of this work

was to add the capability of moving objects around that might not
be within reach of the robot or easily manipulated with
dexterous hands.

We also detailed methods to improve locomotion for
humanoid robots by developing a technique to accomplish in-
situ terrain classification and estimation that can be used to better
inform a walking controller. Finally, we presented our generic
humanoid robot interface that allows for robot operation from
operators with limited training and/or knowledge of robotics.
When operating in high-risk environments, such as nuclear
facilities, it will be necessary to keep humans-in-the-loop
especially individuals with expertise in the environment the
robot is operating in. Future work should consider further
developing all these areas and combining them into one
robotic platform with a supervisory-control interface for a
single operator. Human supervised robots will be a key role in
the future operation, maintenance, and decommissioning of
nuclear facilities.
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